
Felipe A. Cruz

Tutorial on GPU computing

With an introduction to CUDA

University of Bristol, Bristol, United Kingdom.

Marco Ferretti acknoledges authorship and applies some minor changes

Felipe A. Cruz

The GPU evolution

•The Graphic Processing Unit (GPU) is a processor that was specialized for
processing graphics.

•The GPU has recently evolved towards a more flexible architecture.

•Opportunity: We can implement *any algorithm*, not only graphics.

•Challenge: obtain efficiency and high performance.

250

500

1000

0
2003 2004 2005 2006 2007 2008 2009

750

Nvidia GPU
Intel CPU

G
F
LO

P
S

The motivation

GPU computing - key ideas:

•Massively parallel.

•Hundreds of cores.

•Thousands of threads.

•Cheap.

•Highly available.

•Programable: CUDA

Felipe A. Cruz

CUDA: Compute Unified Device Architecture

•Introduced by Nvidia in late 2006.

•CUDA is a compiler and toolkit for programming NVIDIA GPUs.

•CUDA API extends the C programming language.

•Runs on thousands of threads.

•It is an scalable model.

•Objectives:

•Express parallelism.

•Give a high level abstraction from hardware.

Felipe A. Cruz

NVIDIA: GPU vendor

•GPU market: multi-billion dollars! (Nvidia +30% market)

•Sold hundreds of millions of CUDA-capable GPUs.

•HPC market is tiny in comparison.

•New GPU generation every ~18 months.

•Strong support to GPU computing:

•Hardware side: developing flexible GPUs.

•Software side: releasing and improving development tools.

•Community side: support to academics.

•Links: www.nvidia.com, http://www.nvidia.com/object/cuda_home.html

Felipe A. Cruz

http://www.nvidia.com
http://www.nvidia.com
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html

How a GPU looks like?

•Most computers have one.

•Billions of transistors.

•Computing:

•1 Teraflop (Single precision)

•100 Gflops (Double precision)

•Also:

•A heater for winter time!

•Supercomputer for the masses?

Felipe A. Cruz

Die comparison Chip areas

Tesla card Tesla S1070: 4 cards

Ok... after the buzz

•Question 1: Why accelerator technology today? If it has been around since the 70’s!

•Question 2: Can I really get 100x in my application?

•Question 3: CUDA? vendor dependent?

•Question 4: GPU computing = General-purpose on GPU?

Felipe A. Cruz

Why accelerator technology today?

•Investment on GPU technology makes
 more sense today than in 2004.

•CPU uni-processor speed is not doubling
 every 2 years anymore!

•Case: investing in an accelerator that
 gives a ~10x speedup:

•2004 speedup 1.52x per year: 10x today would be 1.3x acceleration in 5 years.

•TODAY speedup 1.15x per year: 10x today would be 4.9x acceleration in 5 years.

•Consider the point that GPU parallel performance is doubling every 18 months!

Felipe A. Cruz

0

2.5

5.0

7.5

10.0

2009 2010 2011 2012 2013 2014

Before Now

Amdahl’s Law
Maximum speedup

Can I get 100x speedups?

•You can get hundred-fold speedup for
some algorithms.

•It depends on the non-parallel part:
Amdahl’s law.

•Complex application normally make use of
many algorithms.

•Look for alternative ways to perform the
computations that are more parallel.

•Significance: An accelerated program is
going to be as fast as its serial part!

Felipe A. Cruz

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 10 100 1000 10000
Sp

ee
du

p

Number of processors

Amdahl’s law: parallel portion

95%
90%
70%
50%

CUDA language is vendor dependent?

•Yes, and nobody wants to locked to a single vendor.

•OpenCL is going to become an industry standard. (Some time in the future.)

•OpenCL is a low level specification, more complex to program with than CUDA C.

•CUDA C is more mature and currently makes more sense (to me).

•However, OpenCL is not “that” different from CUDA. Porting CUDA to OpenCL
should be easy in the future.

•Personally, I’ll wait until OpenCL standard & tools are more mature.

Felipe A. Cruz

GPU computing = General-purpose GPU?

•With CUDA you can program in C but with some restrictions.

•Next CUDA generation will have full support C/C++ (and much more.)

•However, GPU are still highly specialized hardware.

•Performance in the GPU does not come from the flexibility...

Felipe A. Cruz

GPU computing features

•Fast GPU cycle: New hardware every ~18 months.

•Requires special programming but similar to C.

•CUDA code is forward compatible with future hardware.

•Cheap and available hardware (£200 to £1000).

•Number crunching: 1 card ~= 1 teraflop ~= small cluster.

•Small factor of the GPU.

•Important factors to consider: power and cooling!

Felipe A. Cruz

CUDA introduction

Felipe A. Cruz

with images from CUDA programming guide

Felipe A. Cruz

Deliver a package as
soon as possible

Deliver many packages
within a reasonable timescale.

What’s better?
Many scooters

Sport car

Felipe A. Cruz

What do you need?

High throughput
and

reasonable latency

Low latency
and

reasonable throughput

Compute a job as
fast as possible.

Compute many jobs
within a reasonable timeframe.

NVIDIA GPU Architecture

Felipe A. Cruz

Comparison of NVIDIA GPU generations. Current generation: GT200. Table from NVIDIA Fermi whitepaper.

CUDA architecture
•Support of languages: C, C++, OpenCL.

•Windows, linux, OS X compatible.

Felipe A. Cruz

Application

Language: C + extensions

CUDA

Host GPU

Architecture CPU and GPU model

Strong points of CUDA
•Abstracting from the hardware

•Abstraction by the CUDA API. You don’t see every little aspect of the machine.

•Gives flexibility to the vendor. Change hardware but keep legacy code.

•Forward compatible.

•Automatic Thread management (can handle +100k threads)

•Multithreading: hides latency and helps maximize the GPU utilization.

•Transparent for the programmer (you don’t worry about this.)

•Limited synchronization between threads is provided.

•Difficult to dead-lock. (No message passing!)

Felipe A. Cruz

Programmer effort
•Analyze algorithm for exposing parallelism:

•Block size

•Number of threads

•Tool: pen and paper

•Challenge: Keep machine busy (with limited resources)

•Global data set (Have efficient data transfers)

•Local data set (Limited on-chip memory)

•Register space (Limited on-chip memory)

•Tool: Occupancy calculator

Felipe A. Cruz

Outline

•Memory hierarchy.

•Thread hierarchy.

•Basic C extensions.

•GPU execution.

•Resources.

Felipe A. Cruz

Thread hierarchy
•Kernels are executed by thread.

•A kernel is a simple C program.

•Each thread has it own ID.

•Thousands of threads execute same kernel.

•Threads are grouped into blocks.

•Threads in a block can synchronize execution.

•Blocks are grouped in a grid.

•Blocks are independent (Must be able to be
executed in any order.)

Felipe A. Cruz

Memory hierarchy
•Three types of memory in the graphic card:

•Global memory: 4GB

•Shared memory: 16 KB

•Registers: 16 KB

•Latency:

•Global memory: 400-600 cycles

•Shared memory: Fast

•Register: Fast

•Purpose:

•Global memory: IO for grid

•Shared memory: thread collaboration

•Registers: thread space

Felipe A. Cruz

Basic C extensions
Function modifiers

•__global__ : to be called by the host but executed by the GPU.

•__host__ : to be called and executed by the host.

Kernel launch parameters

•Block size: (x, y, z). x*y*z = Maximum of 768 threads total. (Hw dependent)

•Grid size: (x, y). Maximum of thousands of threads. (Hw dependent)

Variable modifiers

•__shared__ : variable in shared memory.

•__syncthreads() : sync of threads within a block.

Felipe A. Cruz

Check CUDA programming guide for all the features!

Example:device

Felipe A. Cruz

•Simple example: add two arrays

•Not strange code: It is C with extensions.

•Example from CUDA programming guide

Example:device

Felipe A. Cruz

Thread id

•Simple example: add two arrays

•Not strange code: It is C with extensions.

•Example from CUDA programming guide

Example: host

Felipe A. Cruz

Example: host

Felipe A. Cruz

Memory
allocation

Example: host

Felipe A. Cruz

Memory
copy: Host -> GPU

Example: host

Felipe A. Cruz

Kernel call

Example: host

Felipe A. Cruz

Memory
copy: GPU -> Host

Example: host

Felipe A. Cruz

Free GPU memory

Example: host

Felipe A. Cruz

Work flow

Felipe A. Cruz

0 1 2 3 4 5 6 7 ...
Memory

allocation

Memory
copy: Host -> GPU

Kernel call

Memory
copy: GPU -> Host

Free GPU memory

Ti
m

e

