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The GPU evolution

•The Graphic Processing Unit (GPU) is a processor that was specialized for
processing graphics.

•The GPU has recently evolved towards a more flexible architecture.

•Opportunity: We can implement *any algorithm*, not only graphics.

•Challenge: obtain efficiency and high performance.
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The motivation

GPU computing - key ideas:

•Massively parallel.

•Hundreds of cores.

•Thousands of threads.

•Cheap.

•Highly available.

•Programable: CUDA
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CUDA: Compute Unified Device Architecture

•Introduced by Nvidia in late 2006.

•CUDA is a compiler and toolkit for programming NVIDIA GPUs.

•CUDA API extends the C programming language.

•Runs on thousands of threads.

•It is an scalable model.

•Objectives:

•Express parallelism.

•Give a high level abstraction from hardware.
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NVIDIA: GPU vendor

•GPU market: multi-billion dollars! (Nvidia +30% market)

•Sold hundreds of millions of CUDA-capable GPUs.

•HPC market is tiny in comparison.

•New GPU generation every ~18 months.

•Strong support to GPU computing:

•Hardware side: developing flexible GPUs.

•Software side: releasing and improving development tools.

•Community side: support to academics.

•Links: www.nvidia.com, http://www.nvidia.com/object/cuda_home.html
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How a GPU looks like?

•Most computers have one.

•Billions of transistors.

•Computing:

•1 Teraflop (Single precision)

•100 Gflops (Double precision)

•Also:

•A heater for winter time!

•Supercomputer for the masses?
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Tesla card Tesla S1070: 4 cards



Ok... after the buzz

•Question 1: Why accelerator technology today? If it has been around since the 70’s!

•Question 2: Can I really get 100x in my application?

•Question 3: CUDA? vendor dependent?

•Question 4: GPU computing = General-purpose on GPU?
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Why accelerator technology today?

•Investment on GPU technology makes 
      more sense today than in 2004. 

•CPU uni-processor speed is not doubling 
      every 2 years anymore!

•Case: investing in an accelerator that 
      gives a ~10x speedup:

•2004 speedup 1.52x per year: 10x today would be 1.3x acceleration in 5 years.

•TODAY speedup 1.15x per year: 10x today would be 4.9x acceleration in 5 years.

•Consider the point that GPU parallel performance is doubling every 18 months!
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Amdahl’s Law
Maximum speedup

Can I get 100x speedups?

•You can get hundred-fold speedup for 
some algorithms.

•It depends on the non-parallel part: 
Amdahl’s law.

•Complex application normally make use of 
many algorithms.

•Look for alternative ways to perform the 
computations that are more parallel.

•Significance: An accelerated program is 
going to be as fast as its serial part!
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CUDA language is vendor dependent?

•Yes, and nobody wants to locked to a single vendor.

•OpenCL is going to become an industry standard. (Some time in the future.)

•OpenCL is a low level specification, more complex to program with than CUDA C.

•CUDA C is more mature and currently makes more sense (to me).

•However, OpenCL is not “that” different from CUDA. Porting CUDA to OpenCL 
should be easy in the future. 

•Personally, I’ll wait until OpenCL standard & tools are more mature.
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GPU computing = General-purpose GPU?

•With CUDA you can program in C but with some restrictions.

•Next CUDA generation will have full support C/C++ (and much more.)

•However, GPU are still highly specialized hardware.

•Performance in the GPU does not come from the flexibility...
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GPU computing features

•Fast GPU cycle: New hardware every ~18 months.

•Requires special programming but similar to C.

•CUDA code is forward compatible with future hardware.

•Cheap and available hardware (£200 to £1000).

•Number crunching: 1 card ~= 1 teraflop ~= small cluster.

•Small factor of the GPU.

•Important factors to consider: power and cooling!
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CUDA introduction
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with images from CUDA programming guide
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Deliver a package as
soon as possible

Deliver many packages 
within a reasonable timescale.

What’s better?
Many scooters

Sport car



Felipe A. Cruz

What do you need?

High throughput
and

reasonable latency

Low latency
and

reasonable throughput

Compute a job as
fast as possible.

Compute many jobs 
within a reasonable timeframe.



NVIDIA GPU Architecture
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Comparison of NVIDIA GPU generations. Current generation: GT200. Table from NVIDIA Fermi whitepaper.



CUDA architecture
•Support of languages: C, C++, OpenCL.

•Windows, linux, OS X compatible.
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Application

Language: C + extensions

CUDA

Host GPU

Architecture CPU and GPU model



Strong points of CUDA
•Abstracting from the hardware

•Abstraction by the CUDA API. You don’t see every little aspect of the machine.

•Gives flexibility to the vendor. Change hardware but keep legacy code.

•Forward compatible.

•Automatic Thread management (can handle +100k threads)

•Multithreading: hides latency and helps maximize the GPU utilization.

•Transparent for the programmer (you don’t worry about this.)

•Limited synchronization between threads is provided.

•Difficult to dead-lock. (No message passing!)
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Programmer effort
•Analyze algorithm for exposing parallelism:

•Block size

•Number of threads

•Tool: pen and paper

•Challenge: Keep machine busy (with limited resources)

•Global data set (Have efficient data transfers)

•Local data set (Limited on-chip memory)

•Register space (Limited on-chip memory)

•Tool: Occupancy calculator
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Outline

•Memory hierarchy.

•Thread hierarchy.

•Basic C extensions.

•GPU execution.

•Resources.
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Thread hierarchy
•Kernels are executed by thread.

•A kernel is a simple C program.

•Each thread has it own ID.

•Thousands of threads execute same kernel.

•Threads are grouped into blocks.

•Threads in a block can synchronize execution.

•Blocks are grouped in a grid.

•Blocks are independent (Must be able to be 
executed in any order.)
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Memory hierarchy
•Three types of memory in the graphic card:

•Global memory: 4GB

•Shared memory: 16 KB

•Registers: 16 KB

•Latency:

•Global memory: 400-600 cycles

•Shared memory: Fast

•Register: Fast

•Purpose:

•Global memory: IO for grid

•Shared memory: thread collaboration

•Registers: thread space
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Basic C extensions
Function modifiers

•__global__ : to be called by the host but executed by the GPU.

•__host__ : to be called and executed by the host.

Kernel launch parameters

•Block size: (x, y, z). x*y*z = Maximum of 768 threads total. (Hw dependent)

•Grid size: (x, y). Maximum of thousands of threads. (Hw dependent)

Variable modifiers

•__shared__ : variable in shared memory.

•__syncthreads() : sync of threads within a block.
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Check CUDA programming guide for all the features!



Example:device

Felipe A. Cruz

•Simple example: add two arrays

•Not strange code: It is C with extensions.

•Example from CUDA programming guide



Example:device
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Thread id

•Simple example: add two arrays

•Not strange code: It is C with extensions.

•Example from CUDA programming guide



Example: host
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Example: host
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Memory
allocation



Example: host
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Memory
copy: Host -> GPU



Example: host
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Kernel call



Example: host
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Memory
copy: GPU -> Host



Example: host
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Free GPU memory



Example: host
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Work flow
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0 1 2 3 4 5 6 7 ...
Memory

allocation

Memory
copy: Host -> GPU

Kernel call

Memory
copy: GPU -> Host

Free GPU memory
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