
8 | The Next-generation Intel® Core™ Microarchitecture

Index Words

Intel® Technology Journal | Volume 14, Issue 3, 2010

Contributors

Abstract
The next-generation Intel® microarchitecture was designed to allow products
(under the Intel® microarchitecture code name Nehalem and Intel® microarchitecture
code name Westmere) to be scaled from low-power laptops to high-performance
servers. The core was created with power efficiency in mind and offers
performance improvements for both lightly-threaded and highly-threaded
workloads, while also adding key segment-specific features. We describe the
innovative techniques used to achieve these goals in the core, including the
development of traditional microarchitecture enhancements, new instructions,
the addition of Intel Hyper-Threading Technology, innovative power-management
schemes, and other performance and power improvements throughout the core.

Introduction
The Intel® microarchitecture that appears in Nehalem and Westmere processors
is the follow-on to the successful Intel® Core™ and Intel® Core 2 products and
forms the basis of the Intel® Core™ i3, Intel® Core™ i5 and the Intel® Core™ i7
series of chips and the Intel Xeon® 5500/5600/7500 CPUs [1]. Each of these
products is built by combining a processor core that contains the instruction
processing logic and an “Uncore” that contains the logic that glues together
multiple cores and interfaces with the system beyond the processor. The core
is common to all products, while Uncores are designed for specific market
segments. An example Uncore is described in another article in this issue of
the Intel Technology Journal [2]. In this article, we detail the key features of the
core that forms the basis of all the Nehalem and Westmere family of products.
Given that the processor core had to scale from low-power laptops to high-end
servers, we designed it with the overall goal of power efficiency for a wide range
of operations, while achieving improved performance over the prior generation
of processors.

Guiding Principles
Given the range of products to be covered, the focus on power efficiency
required a new mindset in choosing which features to include. Even though
our goal was still to provide high performance, we added features only
if they added performance in a power-efficient manner. If features were
beneficial for performance, but were not power efficient, we did not pursue
them for this design. For this design, the starting point was the Intel Core 2
microarchitecture (code-named Penryn).

The NexT-GeNeraTIoN INTel® Core™ MICroarChITeCTure

Martin Dixon
Intel Corporation

Per Hammarlund
Intel Corporation

Stephan Jourdan
Intel Corporation

Ronak Singhal
Intel Corporation

Nehalem
Westmere
Core
Power consumption
loop Stream Detector
New Instructions
Physical addressing

“We added features only if they added

performance in a power-efficient

manner. If features were beneficial

for performance, but were not power

efficient, we did not pursue them for

this design.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 9

The rule of thumb for judging the power efficiency of any particular
performance feature was to compare performance without the feature versus
performance with the feature within the same power envelope. Total power
consumed by a component includes dynamic power plus leakage power.
Dynamic power is equal to the capacitance multiplied by the frequency and the
square of the voltage. Features that increase capacitance require the frequency
and voltage to be dropped to remain at the same power level. Making the
assumption that frequency and voltage are linearly related and that leakage
is directly proportional to dynamic power, then power is cubically related to
frequency. Therefore, our basic rule of thumb is that a feature that adds 1%
performance needs to do so by adding less than 3% power. For our analysis,
we make the assumption that the interesting power-scaling range starts at the
maximum frequency achievable at the minimum supported voltage. To drop
below that frequency, the voltage is held constant, so there is only a linear
relationship in that range. The power efficiency that needs to be achieved
in that linear scaling range is much more strict and therefore a much less
power-efficient operating point, one that we seek to avoid. Consequently, if a
performance feature is worse than cubic in its power-performance relationship,
then we are actually losing performance in a fixed power envelope. Overall,
for this microarchitecture generation, the majority of the features added were
much better than this 3:1 ratio, with most features approaching 1:1.

Beyond these power-efficient performance features, we also needed to add
market segment-specific features. These were features that were critical for one
of our target segments (mobile, desktop, server) but not in other segments. For
instance, the amount of memory that needs to be addressed is manifested in
the number of physical address bits that are supported in the core. The server
segment has a much higher demand for memory capacity than either desktop
or mobile products. It was important to find a balance between the needs
of each market segment in order to maintain our power efficiency while still
hitting our segment targets.

Figure 1 shows the power-performance characteristics of the core changes
with the addition of segment-specific features, design and microarchitecture
improvements, and performance work. Starting with a baseline curve
(Baseline), we add the segment-specific features (Segment-Specific Features).
With these features, the curve moves up because the power increases without
a performance change. The design and microarchitecture enhancements
(improvements) do three things to the curve:

 • The enhancements move the curve down due to power reduction work.

 • They extend the operating point towards the left, by enabling operation at
lower voltages.

 • They extend the operating point to the right by enabling higher frequency
operation.

“Our basic rule of thumb is that a

feature that adds 1% performance

needs to do so by adding less than

3% power.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

10 | The Next-generation Intel® Core™ Microarchitecture

The power-efficient performance features increase the instructions per clock
(IPC) and move the curve up and to the right. Overall, we end up with a core
that yields higher performance at lower power envelopes and that covers a
wider range of power envelopes.

“We end up with a core that yields

higher performance at lower power

envelopes and that covers a wider

range of power envelopes.”

Figure 1: Power-performance for different changes to a processor design

Power versus Performance

Performance

Baseline

Design Improvements

IPC

Segment Specific Features

P
o

w
er

Summing up our approach for this microarchitecture, the guiding principles
we used in designing the core microarchitecture were these:

 • Simply aggregating more and more cores is not sufficient to provide a
well-balanced performance increase. We must also deliver a per-core
performance increase since not all software has been, or even can be,
upgraded to use all available threads. Moreover, even highly parallel
software still has serial sections that benefit from a faster core. The need
for increased per-core performance has been echoed by many of our key
customers.

 • Customers should not have to choose between high performance when all
cores are active or high performance when only some cores are being used.
Prior to this generation of processors, customers had to make a tradeoff
between number of cores and the maximum frequency that cores could run
at. We sought to eliminate the need for this tradeoff.

 • Power envelopes should remain flat or move down generation after
generation. This enables smaller form factors in laptops, while it also
addresses critical power constraints that face servers today. Therefore, while
we strived for higher performance, we could not do it by increasing power.

Microarchitecture Overview
The Core 2 microarchitecture had a theoretical maximum throughput of
four instructions per cycle. We chose to maintain that maximum theoretical
throughput, so our focus was on how to achieve a greater utilization of the
possible peak performance.

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 11

The core consists of several sub-blocks, known as clusters, that are responsible for
key pieces of overall functionality. In each cluster, a set of new features was added
to improve the overall efficiency of the core. As seen in Figure 2, there are three
basic clusters that make up the core. The front end is responsible for fetching
instruction bytes and decoding those bytes into micro-operations (µops) that the
rest of the core can consume. The Out of Order (OOO) and execution engine
are responsible for allocating the necessary resources to µops, scheduling the µops
for execution, executing them, and then reclaiming the resources. The memory
cluster is responsible for handling load and store operations.

“The core consists of several sub-blocks,

known as clusters, that are responsible

for key pieces of overall functionality.”

Figure 2: Block diagram of the core

ITLB

STLB (2nd Level
TLB)

L3 Cache
and Beyond

Memory
000 Execution

256KB
2nd Level Cache

(Mid Level
Cache)

DTLB
32KB Data

Cache

32KB Instruction
Cache

Retirement
(Reorder Buffer)

4 wide

6 wide

Instruction
Fetch and Pre-

Decode

Instruction
Queue

Decode

Rename/
Allocate

Reservation
Stations

Execution Units

Front-end

Front End
One goal for the front-end cluster is to provide a steady stream of µops to the
other clusters. Otherwise, the rest of the machine starves waiting for operations
to execute. The focus for performance improvements is providing higher
effective throughput through the front end while keeping latencies low.

Intel® Technology Journal | Volume 14, Issue 3, 2010

12 | The Next-generation Intel® Core™ Microarchitecture

Many fundamental portions of the front end remain unchanged from previous
generations of processors. Specifically, the instruction cache size remains at
32 kilobytes and is organized in 64-byte lines. Similarly, there are four decoders
that are used to translate raw instruction bytes into µops for the rest of the
machine to consume.

One area in the front end that has traditionally been improved in each
generation of processors is the accuracy of branch prediction. At the beginning
of each project, we look at what areas of the processor have the greatest
leverage for improving overall performance. And with each generation, branch
prediction is typically near the top of that list. The rationale for this is simple:
more efficient branch prediction gives better efficiency with no other changes to
the machine.

Even though the predictors today have a very high accuracy rate, improving the
prediction accuracy still has a significant impact on performance, because of
the opportunity cost of a mispredicted branch. When a branch is mispredicted,
the impact of flushing the pipeline increases with each generation of processor
as we improve the throughput and increase the speculation depth of the core.

Accurate branch prediction is also critical for power efficiency. Each
mispredicted branch represents a case where instructions were fetched,
decoded, renamed, allocated, and possibly executed, and then thrown away.
Because they are thrown away, the work provides almost no benefit, yet it costs
power. More accurate branch prediction reduces speculative operations and can
result in higher power efficiency.

In this microarchitecture generation, we make several notable improvements
to our branch predictors. First, we add a second-level (L2) branch predictor.
The purpose of this predictor is to aid in improving the prediction accuracy for
applications that have large code footprints that do not fit well in the existing
predictors. This addition is in line with providing better performance for server
workloads, like databases, that typically have large code footprints.

We also added a Renamed Return Stack Buffer (RSB). This idea was first
implemented in the Core 2 Penryn Processor family [2]. CALL instructions
are branches that are typically used to enter into functions, and RET (Return)
instructions are branches used to exit functions and return back to where
the function CALL occurred. An RSB is a microarchitecture feature that
implements a simple stack. The content of the stack is maintained such
that when CALLs occur, the address of the CALL is pushed onto the stack.
When a RET occurs, it pops an address off the stack and uses the popped
address as its prediction of where the RET is branching to. However, in prior
microarchitecture generations, mispredicting branches could corrupt the RSB.
For instance, a CALL instruction would push an address onto the stack, but

“Many fundamental portions of the

front end remain unchanged from

previous generations of processors.”

“The instruction cache size remains

at 32 kilobytes and is organized in

64-byte lines.”

“With each generation, branch

prediction is typically near the top

of that list. The rationale for this

is simple: more efficient branch

prediction gives better efficiency with

no other changes to the machine.”

“We also added a Renamed Return

Stack Buffer (RSB). This idea was first

implemented in the Core 2 Penryn

Processor family.”

“In prior microarchitecture

generations, mispredicting branches

could corrupt the RSB.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 13

then would itself be flushed from the machine due to a mispredicted branch. A
subsequent RET would then pop the address from the mispredicted CALL off
the stack and would also then mispredict. With the renamed RSB, we are able
to avoid these corruption scenarios.

Beyond branch prediction, another area of improvement in this generation
is increasing the number of macrofusion cases. Macrofusion is a capability
introduced in the Core 2 microarchitecture where a TEST or CMP instruction
followed by certain conditional branch instructions could be combined into
a single µop. This is obviously good for power by reducing the number of
operations that flow down the pipeline, and it is good for performance by
eliminating the latency between the TEST/CMP and the branch.

In this generation, we extend macrofusion in two ways. First, Core 2 would
only macrofuse operations in 32-bit mode. In this generation, macrofusion can
be applied in both 32-bit and 64-bit mode. Second, the number of conditional
branch cases that support macrofusion was increased. Newly supported
macrofusion cases in this generation are a compare (CMP) instruction followed
by these instructions:

 • JL (Jump if less than)

 • JGE (Jump if greater than or equal)

 • JLE (Jump if less than or equal)

 • JG (Jump if greater)

Another area in the front end where we sought to improve both power
efficiency and overall performance was in the Loop Stream Detector (LSD).
The motivation behind the LSD is fairly straightforward. Short loops that
execute for many iterations are very common in software. In a short loop,
the front end is fetching and decoding the same instructions over and over,
which is not power efficient. The LSD was created to capture these short
loops in a buffer, reissue operations from that buffer, and then reduce power
by disabling pieces of logic that are not needed—since their work is captured
in the state of the buffer. Figure 3a shows the LSD as it existed in the Core 2
microarchitecture. The branch prediction and instruction fetch sub-blocks are
powered down when running out of the LSD.

“Macrofusion is a capability

introduced in the Core 2

microarchitecture where a TEST or

CMP instruction followed by certain

conditional branch instructions could

be combined into a single µop.”

“In a short loop, the front end is

fetching and decoding the same

instructions over and over, which is

not power efficient. The LSD was

created to capture these short loops

in a buffer, reissue operations from

that buffer, and then reduce power by

disabling pieces of logic that are not

needed.”

Figure 3a: loop Stream Detector in the Core 2 microarchitecture

Branch
Prediction

Fetch
Loop Stream

Detector

18 Instructions
on CoreTM

2 Processors

Decode

Intel® Technology Journal | Volume 14, Issue 3, 2010

14 | The Next-generation Intel® Core™ Microarchitecture

In this microarchitecture generation, we made two key improvements to
the LSD. First, we move the LSD to a later point in the pipeline, as seen in
Figure 3b. By moving it after the decoders, we can now turn off the decoders
when running from the LSD, allowing even more power to be saved. This
change also provides for higher performance by eliminating the decoders
as a possible performance bottleneck for certain code sequences. Second,
by moving the location of the LSD, we can now take advantage of a larger
buffer. In the prior architecture generation, the LSD could cover loops of up
to 18 instructions. Now, in this generation, loops of up to 28 µops in length
can be executed out of the LSD. Our internal studies show that, on average,
the number of µops per instructions is nearly 1, so the 28 µop deep buffer is
virtually equivalent to a 28-instruction deep buffer.

Out of Order and Execution Engine
The OOO and Execution Engine cluster are responsible for scheduling
and executing operations. In this generation, we looked to improve overall
performance by exploiting greater levels of parallelism.

To exploit greater parallelism during execution, we need the processor core to
scan across a greater range of operations to identify cases that are independent
and ready to execute. In this generation of processors, we increased the size of
the OOO window that the hardware scans by 33% from 96 operations in the
Core 2 microarchitecture to 128 operations. This window is implemented as
the Reorder Buffer (ROB), which tracks all operations in flight. Because the
pipeline depth in this processor generation is effectively the same as in the prior
generation, the entire benefit of this increase is used for performance instead of
for simply covering a deeper pipeline.

Additionally, when increasing the size of the ROB, we need to increase the size
of other corresponding buffers to keep the processor well balanced. If we do
not make those increases, all we would be doing is shifting the location of the
performance bottleneck and not actually getting any value out of the larger

“In the prior architecture generation,

the LSD could cover loops of up to 18

instructions. Now, in this generation,

loops of up to 28.”

“We increased the size of the OOO

window that the hardware scans by

33% from 96 operations in the Core 2

microarchitecture to 128 operations.”

Branch
Prediction

Fetch
Loop Stream

Detector

28 Micro-ops on
Next Generation

Core Uarch

Decode

Figure 3b: loop Stream Detector in this microarchitecture generation

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 15

ROB. Consequently, in this generation, we also increased the load buffer by
50% and the store buffer sizes by more than 50%. The increase in the size of
these buffers was proportionally greater than the increase in the ROB size,
based on data we collected that showed that performance bottlenecks in the
previous technology generation were too often caused by the limited number
of load and store buffers rather than by the ROB. Table 1 summarizes the sizes
of these structures in this generation of products as compared to those in the
prior product generation.

Structure Core 2 Next-Generation
(Nehalem/Westmere)

Comment

Reservation
Station

32 36 Dispatches operations to
execution units

Load Buffers 32 48 Tracks all load operations
allocated

Store Buffers 20 32 Tracks all store operations
allocated

Table 1: Size of Key Structures

Operations are scheduled from our unified reservation station (RS). “Unified”
means that all operations, regardless of type, are scheduled from this single
RS. We increased the size of the RS from 32 to 36 entries in this processor
generation as another means of expanding the amount of parallelism that can
be exploited.

The RS is capable of scheduling an operation every cycle on each of its six
execution ports:

 • Ports 0, 1, 5: Integer operations plus Floating Point/SSE operations.

 • Port 2: Load operations.

 • Port 3: Store Address operations; store operations are broken into two
pieces: an address operation and a data operation.

 • Port 4: Store data operation.

This number of execution ports is the same as in the prior generation
microarchitecture. The RS and its connection to the execution units are shown
in Figure 4.

“We also increased the load buffer by

50% and the store buffer sizes by more

than 50%.”

“Operations are scheduled from our

unified reservation station (RS).

“Unified” means that all operations,

regardless of type, are scheduled from

this single.”

“The RS is capable of scheduling an

operation every cycle on each of its six

execution ports.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

16 | The Next-generation Intel® Core™ Microarchitecture

Another major performance improvement made in this microarchitecture
generation was to reduce the cost of mispredicted branches. Mispredicted
branches still have to flush instructions from the wrong path from the pipeline
and cause a new stream of instructions to be fetched, so the minimum latency
impact from a mispredicted branch is not affected. However, in the prior
generation microarchitecture, the new stream of instructions that is fetched on
the correct path after a mispredicted branch was not allowed to allocate into the
ROB, until the mispredicted branch in question was retired. In this generation
of microarchitecture, we remove that restriction and allow the new stream to
allocate and execute without regards to whether the mispredicted branch in
question has retired. By removing this limitation, significant latency can be
saved in certain cases. For example, if a load operation misses all on-die caches
and has to read memory, it may take hundreds of cycles to complete. Following
that load may be a branch instruction that is not dependent on the load. If that
branch mispredicts, in the prior generation microarchitecture, the new stream
of instructions could not execute until the branch retired, which meant that
the long latency load also had to complete, effectively creating a dependence
between the branch and the load. In this new technology generation, no such
dependence is created. This allows the new stream of instructions to start
executing in parallel with the completion of the load that missed the caches.

“In the prior generation

microarchitecture, the new stream

of instructions that is fetched on the

correct path after a mispredicted

branch was not allowed to allocate

into the ROB, until the mispredicted

branch in question was retired.”

Figure 4: reservation station and execution units

Load

P
o

rt
 0

P
o

rt
 1

P
o

rt
 2

P
o

rt
 3

P
o

rt
 4

P
o

rt
 5

Unified Reservation Station

Store Address Store Data

FP Multiply

FP Shuffle

FP Add Branches

Divide
Complex
Integer

SSE Integer
ALU

SSE Integer
ALU

Integer ALU &
Shift

Integer ALU &
Shift

Integer ALU &
LEA

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 17

Memory Subsystem
The memory cluster is responsible for handling load and store operations. The
most noticeable change in the memory subsystem is in the cache hierarchy. In
the prior generation of microarchitecture, the first level of cache was private to
a core while the second level of cache was shared between pairs of cores. In this
generation, we moved to having two levels of cache that are dedicated to the
core and a third level that is shared between cores and is located in the Uncore.

The first-level data cache remains 32 kilobytes in size and continues to use a
writeback policy. Also, we left the cache line size and associativity the same—
64 bytes and 8-ways, respectively. The load-to-use latency of the first-level data
cache increased from three cycles to four cycles in this generation. We added a
new second level, or mid-level, cache (MLC) that is 256 kilobytes in size, also
with 64-byte lines and 8-way set associative. It is also a writeback cache. The
MLC was designed to achieve high performance through a low, 10-cycle, load-
to-use latency. The MLC is a unified cache, holding both instructions and data.
Cache misses from both the first-level instruction cache and from the first-level
data cache look up the MLC on cache misses.

The rationale for adding a second level of cache dedicated to each core was
twofold:

 • We decided to move to having a last-level cache shared between all cores.
Having such a shared cache allows the entire cache to be used by any subset
of the cores, in line with our goal of not penalizing applications that cannot
take advantage of all cores. Therefore, we needed the MLC to buffer the
last-level shared cache from a high rate of requests coming from all of the
cores. This bandwidth buffering also enables greater scalability in core
counts, so that as we build products with larger core counts, we do not
necessarily need to make any changes to the CPU core.

 • Provide a middle latency alternative between the very fast first-level cache
and the third-level cache that would be much slower. By adding this cache,
we optimize the overall effective latency (weighted latency average) across a
wide range of workloads.

Beyond the caching hierarchy, we also updated the Translation Lookaside
Buffer (TLB) hierarchy inside the core with the addition of a second-level
TLB (STLB). The STLB is 512 entries in size and can hold both instruction-
page and data-page translations. The workloads that benefit most from this
structure have large data and code working sets, for example, sets often seen in
high-performance computing and database workloads. By adding the STLB,
numerous page walks can be eliminated, resulting in a performance gain—as
page walks can be costly operations.

“In this generation, we moved to

having two levels of cache that are

dedicated to the core and a third level

that is shared between cores.”

“We added a new second level, or

mid-level, cache (MLC) that is

256 kilobytes in size.”

“Cache misses from both the first-level

instruction cache and from the first-

level data cache look up the MLC on

cache misses.”

“We also updated the Translation

Lookaside Buffer (TLB) hierarchy

inside the core with the addition of a

second-level TLB (STLB).”

“By adding the STLB, numerous page

walks can be eliminated, resulting in

a performance gain.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

18 | The Next-generation Intel® Core™ Microarchitecture

In addition to the STLB, the 32nm version of this microarchitecture
(Westmere family) also adds support for 1GB pages. Prior to this technology
generation, the page sizes supported were 4KB, 2MB, and 4MB. With the
appropriate operating system support, larger page sizes offer the opportunity
for higher performance by again reducing the number of page walks that are
needed to read a given page. Table 2 details each level of the TLB hierarchy.

of Entries

first Level Instruction TLBs

Small Page (4k) 128

Large Page (2M/4M) 7 per thread

first Level Data TLBs

Small Page (4k) 64

Large Page (2M/4M) 32

New 2nd Level Unified TLB

Small Page Only 512

Table 2: TlB hierarchy Description

Another set of memory cluster optimizations made in this microarchitecture
generation revolved around unaligned memory accesses to the first-level data
cache. Specifically, two optimizations were made to improve performance on
these types of operations.

The first optimization relates to 16-byte SSE vector load and store operations.
The SSE architecture defines two forms of 16-byte memory accesses, one that
can be used when the memory location being accessed is aligned on a
16-byte boundary (for example, the MOVDQA instruction), and a second
form that allows any arbitrary byte alignment on these operations (for example,
the MOVDQU instruction). The latter case is important because compilers
often have to be conservative when generating code; they cannot always
guarantee that a memory access will be aligned on a 16-byte boundary. Prior
to this, the aligned form of these memory accesses had lower latency and
higher throughput than the unaligned forms. In this new microarchitecture
generation, we optimized the 16-byte unaligned memory access instruction to
have the same latency and throughput as the aligned version, for cases that are
aligned. By doing this, compilers are free to use the unaligned form in all cases
and not have to worry about checking for alignment considerations.

The second optimization in the first-level data cache is for memory accesses
that span a 64-byte cache line. As vectorization becomes more pervasive, we
are seeing the need to improve the performance on these operations, as the
compiler, again, cannot guarantee alignment of operations in many cases. With
this generation of processors, we took significant steps to reduce the latency of
these cache-line split accesses through low-level, microarchitectural techniques.

“This microarchitecture (Westmere

family) also adds support for 1GB

pages.”

“We optimized the 16-byte unaligned

memory access instruction to have

the same latency and throughput as

the aligned version, for cases that are

aligned.”

“We took significant steps to reduce the

latency of these cache-line split accesses

through low-level, microarchitectural

techniques.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 19

The final area of optimization in the memory subsystem was synchronization
latency. As more threads are added to systems, and as software developers
recognize that there are significant performance gains to be had by writing
parallel code, we want to ensure that such code is not severely limited by the
need to synchronize threads. To this end, we have been working to reduce the
latency of cacheable LOCK and XHCG operations, as these are the primitives
used primarily for synchronization. In this processor generation, we reduce both
the latency and side-effect costs of these operations. The significant reduction in
latency was achieved through careful re-pipelining. We also worked to minimize
the pipeline stalls that these synchronization operations caused. Prior to this
technology, all memory operations younger than the LOCK/XCHG had to wait
for the LOCK/XCHG to complete. However, there was no architectural reason
that we had to be this conservative, so this time around, we allow younger load
operations to proceed even while an older LOCK/XCHG is still executing, as
long as the other instructions do not overlap with the LOCK/XCHG in the
memory they are accessing. This improvement does not show up in the latency of
the LOCK/XCHG instructions, but it does show up in overall performance by
allowing subsequent instructions to complete faster than in previous processors.

Intel® Hyper-Threading Technology
Even with all of the techniques previously described, very few software
applications are able to sustain a throughput near the core’s theoretical
capability of four instructions per cycle. Therefore, there was still an
opportunity to further increase the utilization of the design. To take advantage
of these resources, Intel Hyper-Threading Technology, which was first
implemented in the Intel Pentium® 4 processor family, was re-introduced to
improve the throughput of the core for multi-threaded software environments
in an extremely area- and power-efficient manner.

The basic idea of Intel Hyper-Threading Technology is to allow two logical
processors to execute simultaneously within the core. Each logical processor
has its own software thread of execution state. Because a single software
thread rarely fully exploits the peak capability of the core on a sustained
basis, the central idea was that by introducing a second software thread, we
could increase the overall throughput of the CPU core. This design yields an
extremely efficient performance feature, since a minimal amount of hardware is
added to provide this performance improvement.

Several key philosophies went into the design of Intel Hyper-Threading
Technology in this processor generation:

 • When Hyper-Threading Technology is enabled, but only a single software
thread is scheduled to a core, the performance of that thread should be
basically identical to when Intel Hyper-Threading Technology is disabled.
This behavior was achieved by making sure that resources that are shared or
partitioned between logical processors can be completely used when only
one thread is active.

“We have been working to reduce

the latency of cacheable LOCK

and XHCG operations, as these are

the primitives used primarily for

synchronization.”

“Prior to this technology, all memory

operations younger than the LOCK/

XCHG had to wait for the LOCK/

XCHG to complete.”

“Very few software applications are

able to sustain a throughput near the

core’s theoretical capability of four

instructions per cycle.”

“Intel Hyper-Threading Technology,

which was first implemented in the

Intel Pentium® 4 processor family, was

re-introduced.”

“Because a single software thread

rarely fully exploits the peak capability

of the core on a sustained basis, the

central idea was that by introducing

a second software thread, we could

increase the overall throughput of the

CPU core.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

20 | The Next-generation Intel® Core™ Microarchitecture

 • There are points in the processor pipeline where the logic has to either
operate on one thread or the other. When faced with these arbitration
points, design the selection algorithm to achieve fairness between the
threads. Therefore, if both threads are active and have work to do, the
arbitration points will use a “ping-pong” scheme to switch between
the two threads on a cycle-by-cycle basis.

 • When faced with an arbitration point in the pipeline, if only one thread
has work to do, allow that thread to get full bandwidth. It is often the case
that at an arbitration point in the pipeline, only one thread has work to
do. If that case occurs, we designed the core to give full bandwidth to that
thread until the other thread has work to do. In other words, we do not
unnecessarily constrict throughput by ping-ponging between the threads
unless both threads are active and have work to do.

Given these principles, decisions still had to be made on how various structures
are handled in the face of Intel Hyper-Threading Technology. Four different
policies were available for managing structures and are summarized in Table 3:

 • Replicated: For structures that were replicated, each thread would have its
own copy of the structure. If only a single thread were active in the core, the
structures for the other thread would be unused. The most obvious example
of this type of scheme is in the case of the architectural state. Each thread
must maintain its own architectural state so the structures that hold that
state, such as the retired RF, must be replicated. Cases that are replicated
represent a real area and power cost for Hyper Threading Technology, but
the number of cases where structures are replicated is limited.

 • Partitioned: For structures that are partitioned, when two threads are
active, each one is able to access only half of the structure. When only a
single thread is active, we make the entire structure available to that thread.
Prime examples where we partitioned structures are the various control
buffers: reorder, store, and load. By partitioning structures, we guarantee
each thread a set of resources to achieve reasonable performance. Moreover,
partitioning of structures typically comes at only a small cost for managing
the structures, but without any increase in the area or the power of the
structures themselves.

 • Competitively shared: For structures that are competitively shared, we
allow the two threads to use as much of the structure as they need. The best
example of this scheme is the caches on the processor. In the caches, we do
not limit a thread to a percentage of the cache. Therefore, if two threads are
active, we allow one thread to occupy a majority of the cache, if that is what
its dynamic program behavior demands.

 • Unaware: Finally, there are parts of the core that are completely unaware
that Hyper-Threading Technology exists. The execution units are the best
example of this, where the computed result is not affected by which thread
is doing the computation.

“We do not unnecessarily constrict

throughput by ping-ponging between

the threads unless both threads are

active and have work to do.”

“By partitioning structures, we

guarantee each thread a set of resources

to achieve reasonable performance.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 21

Policy Description Examples

Replicated Duplicate logic per thread Register State

Renamed RSB

Large Page ITLB

Partitioned Statically allocated between
threads

Load Buffer

Store Buffer

Reorder Buffer

Small Page ITLB

Competitively
Shared

Depends on thread’s dynamic
behavior

Reservation Station

Caches

Data TLB

2nd level TLB

Unaware No impact Execution units

Table 3: Comparison of Intel® hyper-Threading Technology Policies

The key arbitration points in the pipeline that we needed to consider when
implementing Hyper-Threading Technology are these:

 • Instruction Fetch: We support only one read of the Instruction Cache per
cycle; therefore, we need to arbitrate between the two threads to decide
which one gets to read the cache in any given cycle.

 • Instruction Decode: In any given cycle, the bytes from only one thread
can be decoded into µops.

 • Allocation: We can allocate resources (ROB entries, store/load buffer
entries, RS slots) only to a single thread each cycle.

 • Retirement: Similarly, when we retire µops and reclaim their resources, we
can only work on a single thread in a given clock cycle.

Note that the RS is not a point of arbitration between the threads. The RS
schedules µops to the execution units without regard to which thread they
belong to. Instead, its decisions are based upon which instructions are ready
to execute and then choosing the “oldest,” as measured by when they allocated
into the RS.

The overall performance benefit of Hyper-Threading Technology varies
depending on the nature of the software application in question. Some
applications do not benefit from this technology. For example, applications
or benchmarks, like Streams, that are memory bandwidth-bound when not
using Hyper-Threading Technology will likely not see a performance benefit
when Hyper-Threading is enabled, because no additional memory bandwidth

“The overall performance benefit of

Hyper-Threading Technology varies

depending on the nature of the

software application in question.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

22 | The Next-generation Intel® Core™ Microarchitecture

is made available by using this technology. Another category of applications
that will not benefit are those that already operate near the peak throughput
of four instructions per clock or near the peak of another execution’s resource,
since that means that no idle resources can be exploited by the other thread.
Linpack* is a primary example of a benchmark that falls into this category [3].

However, since there are very few workloads that operate near the CPU’s
peak IPC capabilities, there is ample opportunity for software to benefit from
Intel Hyper-Threading Technology. Various reports on real-world workloads
have shown that the performance boost can vary significantly based on the
workload. Facebook has shown 15% higher throughput on one of their
production workloads due to the use of Hyper-Threading Technology [4].
Citrix Systems has shown that Hyper-Threading Technology provides a 57%
increase in the number of users that could be consolidated onto a server [5].
Additionally, measurements on the SpecMPI2007* benchmark suite, a high-
performance computing proxy, have shown gains ranging from 22% to 35%
depending on the specific benchmark with an overall 9% impact on the final
benchmark score [6].

New Instructions and Operations
Another means of improving performance in a power-efficient manner is
through the addition of new instructions that software can exploit. New
instructions improve overall power efficiency by completing in a single
instruction a task that previously was handled by multiple instructions. We can
achieve higher performance at lower power through the addition of these new
instructions. Of course, exploiting the benefit of the new instructions requires
software to be rewritten or re-compiled. Pre-existing software will not see a
benefit from these instructions.

New instructions were introduced in both the 45nm (Nehalem) and 32nm
(Westmere) versions of the core. The instructions were chosen because they
offered significantly higher performance on critical and common operations in
computing today.

In the 45nm version of the Nehalem microarchitecture, seven new instructions
were added for performance, as well as new virtualization functionality and
new timestamp counter (TSC) functionality. Full specification details on
these instructions can be found in Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volumes 2A and 2B [7]. The seven new instructions were
branded as SSE4.2 and comprise the following:

 • PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM: These
four instructions accelerate manipulation operations on text strings. Such
operations can be helpful, for instance, when parsing a stream of XML or
doing regular expression comparisons. These instructions offer powerful

“Citrix Systems has shown that Hyper-

Threading Technology provides a 57%

increase in the number of users that

could be consolidated onto a server.”

“New instructions improve overall

power efficiency by completing in

a single instruction a task that

previously was handled by multiple

instructions.”

“Seven new instructions were branded

as SSE4.2.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 23

capabilities such as identifying substrings within a string, finding a specific
character in a string, or finding a range of characters, such as finding all
numbers, in a string. The instructions operate on the 128-bit SSE register
set, allowing for processing of 16 bytes at a time per operation. An example
usage has shown roughly a 25% average throughput improvement on
parsing XML by use of these new instructions [8].

 • POPCNT: This instruction returns the number of 1’s that are set in an
integer register. This is a common operation in recognition and search
algorithms.

 • CRC32: This instruction accelerates the computation of a Cyclic
Redundancy Check (CRC) by using the iSCSI polynomial, which is used
in several networking protocols [9]. Additionally, this type of operation can
also be used to provide a fast hash function.

 • PCMPGTQ: This instruction compares two SSE integer vector registers
and checks for a “greater than” condition.

Two other architecture-visible features were added to the Nehalem
microarchitecture. Specifically, support was added for a constant time stamp
counter, which aids timing across deep sleep states. Additionally, enhanced
page table (EPT) support was added that allows virtualization vendors to avoid
shadow page tables, removing a source of performance overhead when running
in virtualized environments. Coupled with EPT, two instructions (INVVPID,
INVEPT), were added to the architecture to support invalidations of EPT
translation caches.

In the Westmere architecture, seven new instructions were added that focus
on providing instructions to accelerate the performance of cryptographic
operations. These operations are prevalent today in computing in areas such
as Web commerce and in setting up secure transactions between a host and a
client. The seven new instructions are as follows:

 • AESENC, AESENCLAST, AESDEC, AESDESCLAST,
AESKEYGENASSIST, AESIMC: This collection of six instructions can
be used together to accelerate encryption and decryption by using the
Advanced Encryption Standard (AES) [10]. With these instructions,
performance gains three to ten times better than previous-generation
technology performance have been achieved on commercial software [11].

 • PCLMULQDQ: This instruction performs a carryless multiply operation.
A Galois (binary) field multiply consists of the carryless multiply followed
by a reduction. Galois fields are common in cryptographic operations, such
as AES as well as cyclic redundancy checks, elliptic curve cryptography, and
error correcting codes. AES Galois Counter Mode is probably the most
widely known application of PCLMULQDQ [12].

“This instruction accelerates the

computation of a Cyclic Redundancy

Check (CRC) by using the iSCSI

polynomial, which is used in several

networking protocols [9]. Additionally,

this type of operation can also be used

to provide a fast hash function.”

“In the Westmere architecture, seven

new instructions were added that focus

on providing instructions to accelerate

the performance of cryptographic

operations.”

“Galois fields are common in

cryptographic operations, such as AES

as well as cyclic redundancy checks,

elliptic curve cryptography, and error

correcting codes.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

24 | The Next-generation Intel® Core™ Microarchitecture

 • Also in the Westmere processor architecture, the page table support, when
running in virtualized environments, was further enhanced to support real-
mode guests. This design substantially reduces the time required to boot
virtual machines through BIOS as well as reduces the time to execute device
option ROMs.

These new instructions focus on accelerating specific usage models for critical
and common tasks. Going forward, we will continue to look for opportunities
for such targeted acceleration opportunities, as well as more general-purpose
instruction-set additions, such as the upcoming Intel Advanced Vector
Extensions (AVX). Full details on AVX are available in the Intel Advanced Vector
Extensions Programming Reference [13].

Segment-Specific Features
In this section, we detail a few examples of new segment-specific features, and
we discuss some of the tradeoffs that were made in their design.

Physical and Virtual Addressing
The client segment platforms, mobile and desktop, typically support a
maximum of 4GB-8GB of main memory; large sever systems need to support
very large memory capacities, on the order of 100 GBytes or more. This
wide range of requirements provides a very stark set of tradeoffs. Additional
address bits needed for large memory systems have little value in the client
segments, but they do consume extra power. In addition to increasing power
consumption and adding area, additional address bits can cause stress on the
timing of critical paths in the machine, such as address generation for cache
look-ups. To strike a balance between how many address bits to add, we settled
on a modest two physical address bits over the Core 2 microarchitecture, but
we did not increase the virtual address bits from the number in previous-
generation technology. Our rationale was that physical address bits are critical
to enable certain large systems, and that the number of virtual address bits was
already adequate to enable operating systems for the server systems that needed
to be built.

Reliability Features
To satisfy large server systems, we enhanced the reliability features found in the
prior-generation architecture. Reliability features come in two major categories:
enhancements to the Machine Check Architecture (MCA) and enhancements
to the design and microarchitecture. To achieve the targets for “soft error rates”
we set to enable scaling to the socket and processor counts needed. For both
of these feature additions, it is important to keep in mind that the cores were
designed to meet the requirements of high-end, multi-processor servers with
8-10 cores per socket and up to 8 sockets. Clearly the requirements set by these
high-end server systems far exceed the ones that are set by the client segments.

“We settled on a modest two

physical address bits over the Core 2

microarchitecture, but we did not

increase the virtual address bits from

the number in previous-generation

technology.”

“Because the Westmere core would be

used mostly in the same platforms as

the Nehalem core, we opted against

adding additional addressing bits in

the Westmere version.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 25

For machine-check enhancements, we added more reporting capabilities for
various failure modes to increase coverage and insights into state for diagnostic
software. The cost of MCA features is not high in power, area, or design effort;
however, due to its complexity it is a fairly substantial cost against the project’s
validation budget. A reasonable balance of added features included looking at
the tradeoffs between value and validation cost.

We also added Soft Error Rate (SER) features to meet scalability requirements.
Deciding what SER features to add was arrived at by carefully modeling
possible failure behavior and also looking at a careful modeling of possible
and critical failure behaviors to determine the protection of specific micro-
architectural assets. The SER features we added included items such as parity
on various structures. To further add high-end server reliability, we also added
a mode where the first-level data cache operates at half the size with additional
data reliability protection enabled. This cache mode is a customer-enabled
option for the expandable server (EX) product line, where customers are
willing to trade some performance for additional reliability.

Power Features
Low average power is important to battery life for traditional productivity
workloads and for battery life for specific usages, like video, DVD, or
streaming media playback usages. For this generation of processors, we
modeled the impact of both of these usage cases when making feature
decisions. At a high level, there are two aspects to achieving a good average
power behavior: 1) being able to run at a low power for a minimum
performance point, and 2) being able to transition in and out of low power
states quickly, making sure that the power consumed in these low power states
is as low as possible.

Achieving a low-power operating point is valued by the server segment, where
it enables more cores to be aggregated in a socket. To achieve this operating
point, we typically work on lowering the power consumption in general and
specifically lowering the minimum voltage at which the core can operate
(MinVCC). Having a low MinVCC provides a very efficient way to reduce the
power due to the cubic scaling we discussed earlier. Due to the cubic benefit
from lowering the operating voltage, even small changes have very beneficial
effects. There is typically an area tradeoff involved in the device sizing needed
to achieve a low MinVCC, which is a factor to take into account for the overall
product cost.

Efficient low-power states, also known as C-states, and quick entry and exit
into and out of those states are features that are fairly uniquely valued by the
client mobile segment. At a high level, the lower the power is for a C state, the
more power we save. Moreover, the faster we can enter and exit these states, the
more often we can utilize them without harming overall system performance
characteristics. We added new low-power states, made the power in those states
lower, and optimized entry and exit latencies.

“For machine-check enhancements,

we added more reporting capabilities

for various failure modes to increase

coverage and insights into state for

diagnostic software.”

“Cache mode is a customer-enabled

option for the expandable server (EX)

product line, where customers are

willing to trade some performance for

additional reliability.”

“Efficient low-power states, also

known as C-states, and quick entry

and exit into and out of those states

are features that are fairly uniquely

valued by the client mobile segment.”

“We added new low-power states,

made the power in those states

lower, and optimized entry and exit

latencies.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

26 | The Next-generation Intel® Core™ Microarchitecture

Integration and Scalability
We also added features to make it easier to integrate cores into a large scalable
processor and to better utilize the power for such multi-core systems.

To achieve better performance scaling in systems with high core counts, we
added the previously mentioned MLC to reduce the bandwidth requirement
of the core-Uncore interface. The benefit of the MLC is two-fold. It adds
performance by, on average, improving the perceived latency of memory
accesses through its low latency and by not overtaxing the bandwidth at the
shared last-level cache in the Uncore.

Additionally, the Nehalem generation of processors supports buffers that allow
the core to independently run at a different frequency than the Uncore they
are attached to. This is a key power-efficiency feature where we can adjust the
frequency of the core and the Uncore individually to operate at the best power/
performance efficiency point. For example, we can set the Uncore frequency to
match the desired performance of external interfaces, such as memory speed,
while we let the cores independently run at the frequency that is demanded by
the task, as asked for by the operating system.

Building on the ability to dynamically run the cores at a different frequency,
and isolating a core from the Uncore, this generation of microarchitecture
also supports power gates, where the power to the cores can be completely
turned off when the core is not being used. This feature is important for
mobile average power as it prevents draining of the battery when the core
is doing nothing. Power gates are also key enablers for Intel Turbo Boost
Technology which dynamically allows active cores to run at higher frequencies.
Fundamentally, the turbo boost feature allows products built with this
generation of cores to dynamically use the full-power envelope without
artificially limiting the performance of the cores. With this technology, the
frequency of active cores can scale up if there is power headroom. Power gates
help this by eliminating the power overhead of idle cores. However, even when
all cores are active, Intel® Turbo Boost Technology can kick in and increase the
frequency of all cores if the workload being run is not power intensive. This
technology helps satisfy the philosophy of not penalizing customers whose
software does not take advantage of all cores.

Conclusion
The Nehalem and Westmere architecture is designed to work efficiently for a
wide range of operating points, from mobile to high-end server. High-value,
segment-specific features were added, while at the same time taking care
that the power overhead could be absorbed by all segments. Intel achieves
the needed increase in efficiency of both power and performance through
appropriate buffer size increases and more intelligent algorithms. These
changes were made without fundamentally affecting the pipeline latencies
of the baseline design. The changes deliver exciting features and a superior
performance increase inside equal or lesser power envelopes.

“We can set the Uncore frequency

to match the desired performance

of external interfaces, such as

memory speed, while we let the cores

independently run at the frequency

that is demanded by the task.”

“The power to the cores can be

completely turned off when the core is

not being used.”

“The frequency of active cores can scale

up if there is power headroom.”

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 27

References
[1] Harikrishna Baliga, Niranjan Cooray, Edward Gamsaragan, Peter Smith,

Ki Yoon, James Abel, Antonio Valles. “The Original 45-mn Intel® Core™
2 Processor Performance,” Intel Technology Journal. Available at http://
download.intel.com/technology/itj/2008/v12i3/paper4.pdf

[2] David L Hill, Derek Bachand, Selim Bilgin, Robert Greiner, Per
Hammarlund, Thomas Huff, Steve Kulick, and Robert Safranek. “The
Uncore: A Modular Approach to Feeding the High-Performance Cores,
Intel Technology Journal, Volume 15, Issue 01, 2011.

[3] Pawel Gepner, Michal F. Kowalik, David L. Fraser, Kazimierz
Wackowski. “Early Performance Evaluation of New Six-Core Intel®
Xeon® 5600 Family Processors for HPC,” ispdc, pp. 117–124, 2010
Ninth International Symposium on Parallel and Distributed Computing,
2010.

[4] Real-World Application Benchmarking. Available at http://www.facebook.
com/note.php?note_id=203367363919

[5] Nehalem and XenServer Raise the Bar for XenApp Performance. Available
at http://community.citrix.com/pages/viewpage.action?pageId=73564465

[6] Bugge. H. “An evaluation of Intel’s core i7 architecture using
a comparative approach,” Computer Science—Research and
Development, Vol. 23(3–4), 203–209, 2009.

[7] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volumes
2A and 2B.

[8] Chris Newburn. “High Performance XML Processing with Intel SSE4.2
Hardware and Software Algorithms,” XML in Practice, 2008.

[9] Vinodh Gopal, et al. “Fast CRC Computation for iSCSI Polynomial
Using CRC32 Instruction.” Available at http://download.intel.com/
design/intarch/papers/323405.pdf

[10] Gueron, S. “Advanced encryption standard (AES) instructions
set,” Technical report, Intel Corporation, 2008. Available at
http://softwarecommunity.intel.com/isn/downloads/intelavx/
AES-Instructions-Set WP.pdf

[11] Refer to http://www.tomshardware.com/reviews/clarkdale-aes-ni-
encryption,2538-7.html

Intel® Technology Journal | Volume 14, Issue 3, 2010

28 | The Next-generation Intel® Core™ Microarchitecture

[12] Gueron, S., et al. “Intel Carry-Less Multiplication Instruction and
its Usage for Computing the GCM Mode,” White Paper, Intel
Corporation, 2010.

[13] Intel Advanced Vector Extensions Programming Reference. Available at
http://software.intel.com/file/19151

Authors’ Biographies
Martin Dixon is a Principal Engineer in the Intel Architecture Group, working
closely with software partners to develop and enhance the overall instruction
set. He received his B.S. degree in Electrical and Computer Engineering from
Carnegie Mellon University.

Per Hammarlund is a Senior Principal Engineer in the Intel Architecture
Group working on microarchitecture development, Intel Hyper-Threading
Technology, power efficiency, and performance modeling. Per started at Intel in
1997 working on the Willamette processors (Pentium 4). He received his PhD
degree in Computer Science from the Royal Institute of Technology (KTH) in
1996.

Stephan Jourdan is a Senior Principal Engineer in the Intel Architecture
Group.

Ronak Singhal is a Senior Principal Engineer in the Intel Architecture Group
working on microarchitecture development, Instruction Set Architecture
development, and performance analysis. He joined Intel in 1997 and has
worked on multiple generations of processors, starting with the initial Intel
Pentium 4 processor. He received his B.S. and M.S. degrees in Electrical and
Computer Engineering from Carnegie Mellon University.

Intel® Technology Journal | Volume 14, Issue 3, 2010

The Next-generation Intel® Core™ Microarchitecture | 29

Copyright
Copyright © 2011 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others.
Requires an Intel® HT Technology enabled system, check with your PC manufacturer. Performance
will vary depending on the specific hardware and software used. Not available on Intel® CoreT
i5-750. For more information including details on which processors support HT Technology, visit
http://www.intel.com/info/hyperthreading
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor,
BIOS, virtual machine monitor (VMM). Functionality, performance or other benefits will vary
depending on hardware and software configurations. Software applications may not be compatible
with all operating systems. Consult your PC manufacturer. For more information, visit
http://www.intel.com/go/virtualization
Requires a system with Intel® Turbo Boost Technology capability. Consult your PC manufacturer.
Performance varies depending on hardware, software and system configuration. For more
information, visit http://www.intel.com/technology/turboboost

