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Abstract
The next-generation Intel® microarchitecture was designed to allow products 
(under the Intel® microarchitecture code name Nehalem and Intel® microarchitecture 
code name Westmere) to be scaled from low-power laptops to high-performance 
servers. The core was created with power efficiency in mind and offers 
performance improvements for both lightly-threaded and highly-threaded 
workloads, while also adding key segment-specific features. We describe the 
innovative techniques used to achieve these goals in the core, including the 
development of traditional microarchitecture enhancements, new instructions,  
the addition of Intel Hyper-Threading Technology, innovative power-management 
schemes, and other performance and power improvements throughout the core. 

Introduction
The Intel® microarchitecture that appears in Nehalem and Westmere processors 
is the follow-on to the successful Intel® Core™ and Intel® Core 2 products and 
forms the basis of the Intel® Core™ i3, Intel® Core™ i5 and the Intel® Core™ i7 
series of chips and the Intel Xeon® 5500/5600/7500 CPUs [1]. Each of these 
products is built by combining a processor core that contains the instruction 
processing logic and an “Uncore” that contains the logic that glues together 
multiple cores and interfaces with the system beyond the processor. The core 
is common to all products, while Uncores are designed for specific market 
segments. An example Uncore is described in another article in this issue of 
the Intel Technology Journal [2]. In this article, we detail the key features of the 
core that forms the basis of all the Nehalem and Westmere family of products. 
Given that the processor core had to scale from low-power laptops to high-end 
servers, we designed it with the overall goal of power efficiency for a wide range 
of operations, while achieving improved performance over the prior generation 
of processors. 

Guiding Principles
Given the range of products to be covered, the focus on power efficiency 
required a new mindset in choosing which features to include. Even though 
our goal was still to provide high performance, we added features only 
if they added performance in a power-efficient manner. If features were 
beneficial for performance, but were not power efficient, we did not pursue 
them for this design. For this design, the starting point was the Intel Core 2 
microarchitecture (code-named Penryn). 
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The rule of thumb for judging the power efficiency of any particular 
performance feature was to compare performance without the feature versus 
performance with the feature within the same power envelope. Total power 
consumed by a component includes dynamic power plus leakage power. 
Dynamic power is equal to the capacitance multiplied by the frequency and the 
square of the voltage. Features that increase capacitance require the frequency 
and voltage to be dropped to remain at the same power level. Making the 
assumption that frequency and voltage are linearly related and that leakage 
is directly proportional to dynamic power, then power is cubically related to 
frequency. Therefore, our basic rule of thumb is that a feature that adds 1% 
performance needs to do so by adding less than 3% power. For our analysis, 
we make the assumption that the interesting power-scaling range starts at the 
maximum frequency achievable at the minimum supported voltage. To drop 
below that frequency, the voltage is held constant, so there is only a linear 
relationship in that range. The power efficiency that needs to be achieved 
in that linear scaling range is much more strict and therefore a much less 
power-efficient operating point, one that we seek to avoid. Consequently, if a 
performance feature is worse than cubic in its power-performance relationship, 
then we are actually losing performance in a fixed power envelope. Overall, 
for this microarchitecture generation, the majority of the features added were 
much better than this 3:1 ratio, with most features approaching 1:1.

Beyond these power-efficient performance features, we also needed to add 
market segment-specific features. These were features that were critical for one 
of our target segments (mobile, desktop, server) but not in other segments. For 
instance, the amount of memory that needs to be addressed is manifested in 
the number of physical address bits that are supported in the core. The server 
segment has a much higher demand for memory capacity than either desktop 
or mobile products. It was important to find a balance between the needs 
of each market segment in order to maintain our power efficiency while still 
hitting our segment targets.

Figure 1 shows the power-performance characteristics of the core changes 
with the addition of segment-specific features, design and microarchitecture 
improvements, and performance work. Starting with a baseline curve 
(Baseline), we add the segment-specific features (Segment-Specific Features). 
With these features, the curve moves up because the power increases without 
a performance change. The design and microarchitecture enhancements 
(improvements) do three things to the curve:

 • The enhancements move the curve down due to power reduction work. 

 • They extend the operating point towards the left, by enabling operation at 
lower voltages. 

 • They extend the operating point to the right by enabling higher frequency 
operation.

“Our basic rule of thumb is that a 

feature that adds 1% performance 

needs to do so by adding less than  

3% power.”
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The power-efficient performance features increase the instructions per clock 
(IPC) and move the curve up and to the right. Overall, we end up with a core 
that yields higher performance at lower power envelopes and that covers a 
wider range of power envelopes. 

“We end up with a core that yields 

higher performance at lower power 

envelopes and that covers a wider 

range of power envelopes.”

Figure 1: Power-performance for different changes to a processor design
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Summing up our approach for this microarchitecture, the guiding principles 
we used in designing the core microarchitecture were these:

 • Simply aggregating more and more cores is not sufficient to provide a 
well-balanced performance increase. We must also deliver a per-core 
performance increase since not all software has been, or even can be, 
upgraded to use all available threads. Moreover, even highly parallel 
software still has serial sections that benefit from a faster core. The need 
for increased per-core performance has been echoed by many of our key 
customers.

 • Customers should not have to choose between high performance when all 
cores are active or high performance when only some cores are being used. 
Prior to this generation of processors, customers had to make a tradeoff 
between number of cores and the maximum frequency that cores could run 
at. We sought to eliminate the need for this tradeoff.

 • Power envelopes should remain flat or move down generation after 
generation. This enables smaller form factors in laptops, while it also 
addresses critical power constraints that face servers today. Therefore, while 
we strived for higher performance, we could not do it by increasing power.

Microarchitecture Overview
The Core 2 microarchitecture had a theoretical maximum throughput of 
four instructions per cycle. We chose to maintain that maximum theoretical 
throughput, so our focus was on how to achieve a greater utilization of the 
possible peak performance. 
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The core consists of several sub-blocks, known as clusters, that are responsible for 
key pieces of overall functionality. In each cluster, a set of new features was added 
to improve the overall efficiency of the core. As seen in Figure 2, there are three 
basic clusters that make up the core. The front end is responsible for fetching 
instruction bytes and decoding those bytes into micro-operations (µops) that the 
rest of the core can consume. The Out of Order (OOO) and execution engine 
are responsible for allocating the necessary resources to µops, scheduling the µops 
for execution, executing them, and then reclaiming the resources. The memory 
cluster is responsible for handling load and store operations.

“The core consists of several sub-blocks, 

known as clusters, that are responsible 

for key pieces of overall functionality.”

Figure 2: Block diagram of the core
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One goal for the front-end cluster is to provide a steady stream of µops to the 
other clusters. Otherwise, the rest of the machine starves waiting for operations 
to execute. The focus for performance improvements is providing higher 
effective throughput through the front end while keeping latencies low.



Intel® Technology Journal | Volume 14, Issue 3, 2010

12   |   The Next-generation Intel® Core™ Microarchitecture

Many fundamental portions of the front end remain unchanged from previous 
generations of processors. Specifically, the instruction cache size remains at 
32 kilobytes and is organized in 64-byte lines. Similarly, there are four decoders 
that are used to translate raw instruction bytes into µops for the rest of the 
machine to consume.

One area in the front end that has traditionally been improved in each 
generation of processors is the accuracy of branch prediction. At the beginning 
of each project, we look at what areas of the processor have the greatest 
leverage for improving overall performance. And with each generation, branch 
prediction is typically near the top of that list. The rationale for this is simple: 
more efficient branch prediction gives better efficiency with no other changes to 
the machine. 

Even though the predictors today have a very high accuracy rate, improving the 
prediction accuracy still has a significant impact on performance, because of 
the opportunity cost of a mispredicted branch. When a branch is mispredicted, 
the impact of flushing the pipeline increases with each generation of processor 
as we improve the throughput and increase the speculation depth of the core. 

Accurate branch prediction is also critical for power efficiency. Each 
mispredicted branch represents a case where instructions were fetched, 
decoded, renamed, allocated, and possibly executed, and then thrown away. 
Because they are thrown away, the work provides almost no benefit, yet it costs 
power. More accurate branch prediction reduces speculative operations and can 
result in higher power efficiency.

In this microarchitecture generation, we make several notable improvements 
to our branch predictors. First, we add a second-level (L2) branch predictor. 
The purpose of this predictor is to aid in improving the prediction accuracy for 
applications that have large code footprints that do not fit well in the existing 
predictors. This addition is in line with providing better performance for server 
workloads, like databases, that typically have large code footprints.

We also added a Renamed Return Stack Buffer (RSB). This idea was first 
implemented in the Core 2 Penryn Processor family [2]. CALL instructions 
are branches that are typically used to enter into functions, and RET (Return) 
instructions are branches used to exit functions and return back to where 
the function CALL occurred. An RSB is a microarchitecture feature that 
implements a simple stack. The content of the stack is maintained such 
that when CALLs occur, the address of the CALL is pushed onto the stack. 
When a RET occurs, it pops an address off the stack and uses the popped 
address as its prediction of where the RET is branching to. However, in prior 
microarchitecture generations, mispredicting branches could corrupt the RSB. 
For instance, a CALL instruction would push an address onto the stack, but 

“Many fundamental portions of the 

front end remain unchanged from 

previous generations of processors.”

“The instruction cache size remains  

at 32 kilobytes and is organized in  

64-byte lines.”

“With each generation, branch 

prediction is typically near the top 

of that list. The rationale for this 

is simple: more efficient branch 

prediction gives better efficiency with 

no other changes to the machine.”

“We also added a Renamed Return 

Stack Buffer (RSB). This idea was first 

implemented in the Core 2 Penryn 

Processor family.”

“In prior microarchitecture 

generations, mispredicting branches 

could corrupt the RSB.”
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then would itself be flushed from the machine due to a mispredicted branch. A 
subsequent RET would then pop the address from the mispredicted CALL off 
the stack and would also then mispredict. With the renamed RSB, we are able 
to avoid these corruption scenarios.

Beyond branch prediction, another area of improvement in this generation 
is increasing the number of macrofusion cases. Macrofusion is a capability 
introduced in the Core 2 microarchitecture where a TEST or CMP instruction 
followed by certain conditional branch instructions could be combined into 
a single µop. This is obviously good for power by reducing the number of 
operations that flow down the pipeline, and it is good for performance by 
eliminating the latency between the TEST/CMP and the branch. 

In this generation, we extend macrofusion in two ways. First, Core 2 would 
only macrofuse operations in 32-bit mode. In this generation, macrofusion can 
be applied in both 32-bit and 64-bit mode. Second, the number of conditional 
branch cases that support macrofusion was increased. Newly supported 
macrofusion cases in this generation are a compare (CMP) instruction followed 
by these instructions:

 • JL (Jump if less than)

 • JGE (Jump if greater than or equal)

 • JLE (Jump if less than or equal) 

 • JG (Jump if greater)

Another area in the front end where we sought to improve both power 
efficiency and overall performance was in the Loop Stream Detector (LSD). 
The motivation behind the LSD is fairly straightforward. Short loops that 
execute for many iterations are very common in software. In a short loop, 
the front end is fetching and decoding the same instructions over and over, 
which is not power efficient. The LSD was created to capture these short 
loops in a buffer, reissue operations from that buffer, and then reduce power 
by disabling pieces of logic that are not needed—since their work is captured 
in the state of the buffer. Figure 3a shows the LSD as it existed in the Core 2 
microarchitecture. The branch prediction and instruction fetch sub-blocks are 
powered down when running out of the LSD.

“Macrofusion is a capability 

introduced in the Core 2 

microarchitecture where a TEST or 

CMP instruction followed by certain 

conditional branch instructions could 

be combined into a single µop.”

“In a short loop, the front end is 

fetching and decoding the same 

instructions over and over, which is 

not power efficient. The LSD was 

created to capture these short loops 

in a buffer, reissue operations from 

that buffer, and then reduce power by 

disabling pieces of logic that are not 

needed.”

Figure 3a: loop Stream Detector in the Core 2 microarchitecture
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In this microarchitecture generation, we made two key improvements to  
the LSD. First, we move the LSD to a later point in the pipeline, as seen in 
Figure 3b. By moving it after the decoders, we can now turn off the decoders 
when running from the LSD, allowing even more power to be saved. This 
change also provides for higher performance by eliminating the decoders 
as a possible performance bottleneck for certain code sequences. Second, 
by moving the location of the LSD, we can now take advantage of a larger 
buffer. In the prior architecture generation, the LSD could cover loops of up 
to 18 instructions. Now, in this generation, loops of up to 28 µops in length 
can be executed out of the LSD. Our internal studies show that, on average, 
the number of µops per instructions is nearly 1, so the 28 µop deep buffer is 
virtually equivalent to a 28-instruction deep buffer. 

Out of Order and Execution Engine
The OOO and Execution Engine cluster are responsible for scheduling 
and executing operations. In this generation, we looked to improve overall 
performance by exploiting greater levels of parallelism.

To exploit greater parallelism during execution, we need the processor core to 
scan across a greater range of operations to identify cases that are independent 
and ready to execute. In this generation of processors, we increased the size of 
the OOO window that the hardware scans by 33% from 96 operations in the 
Core 2 microarchitecture to 128 operations. This window is implemented as 
the Reorder Buffer (ROB), which tracks all operations in flight. Because the 
pipeline depth in this processor generation is effectively the same as in the prior 
generation, the entire benefit of this increase is used for performance instead of 
for simply covering a deeper pipeline.

Additionally, when increasing the size of the ROB, we need to increase the size 
of other corresponding buffers to keep the processor well balanced. If we do 
not make those increases, all we would be doing is shifting the location of the 
performance bottleneck and not actually getting any value out of the larger 

“In the prior architecture generation, 

the LSD could cover loops of up to 18 

instructions. Now, in this generation, 

loops of up to 28.”

“We increased the size of the OOO 

window that the hardware scans by 

33% from 96 operations in the Core 2 

microarchitecture to 128 operations.”
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Figure 3b: loop Stream Detector in this microarchitecture generation
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ROB. Consequently, in this generation, we also increased the load buffer by 
50% and the store buffer sizes by more than 50%. The increase in the size of 
these buffers was proportionally greater than the increase in the ROB size, 
based on data we collected that showed that performance bottlenecks in the 
previous technology generation were too often caused by the limited number 
of load and store buffers rather than by the ROB. Table 1 summarizes the sizes 
of these structures in this generation of products as compared to those in the 
prior product generation.

Structure Core 2 Next-Generation 
(Nehalem/Westmere)

Comment

Reservation 
Station

32 36 Dispatches operations to 
execution units

Load Buffers 32 48 Tracks all load operations 
allocated

Store Buffers 20 32 Tracks all store operations 
allocated

Table 1: Size of Key Structures

Operations are scheduled from our unified reservation station (RS). “Unified” 
means that all operations, regardless of type, are scheduled from this single 
RS. We increased the size of the RS from 32 to 36 entries in this processor 
generation as another means of expanding the amount of parallelism that can 
be exploited.

The RS is capable of scheduling an operation every cycle on each of its six 
execution ports:

 • Ports 0, 1, 5: Integer operations plus Floating Point/SSE operations.

 • Port 2: Load operations.

 • Port 3: Store Address operations; store operations are broken into two 
pieces: an address operation and a data operation.

 • Port 4: Store data operation.

This number of execution ports is the same as in the prior generation 
microarchitecture. The RS and its connection to the execution units are shown 
in Figure 4.

“We also increased the load buffer by 

50% and the store buffer sizes by more 

than 50%.”

“Operations are scheduled from our 

unified reservation station (RS). 

“Unified” means that all operations, 

regardless of type, are scheduled from 

this single.”

“The RS is capable of scheduling an 

operation every cycle on each of its six 

execution ports.”
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Another major performance improvement made in this microarchitecture 
generation was to reduce the cost of mispredicted branches. Mispredicted 
branches still have to flush instructions from the wrong path from the pipeline 
and cause a new stream of instructions to be fetched, so the minimum latency 
impact from a mispredicted branch is not affected. However, in the prior 
generation microarchitecture, the new stream of instructions that is fetched on 
the correct path after a mispredicted branch was not allowed to allocate into the 
ROB, until the mispredicted branch in question was retired. In this generation 
of microarchitecture, we remove that restriction and allow the new stream to 
allocate and execute without regards to whether the mispredicted branch in 
question has retired. By removing this limitation, significant latency can be 
saved in certain cases. For example, if a load operation misses all on-die caches 
and has to read memory, it may take hundreds of cycles to complete. Following 
that load may be a branch instruction that is not dependent on the load. If that 
branch mispredicts, in the prior generation microarchitecture, the new stream 
of instructions could not execute until the branch retired, which meant that 
the long latency load also had to complete, effectively creating a dependence 
between the branch and the load. In this new technology generation, no such 
dependence is created. This allows the new stream of instructions to start 
executing in parallel with the completion of the load that missed the caches.

“In the prior generation 

microarchitecture, the new stream 

of instructions that is fetched on the 

correct path after a mispredicted 

branch was not allowed to allocate 

into the ROB, until the mispredicted 

branch in question was retired.”

Figure 4: reservation station and execution units
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Memory Subsystem
The memory cluster is responsible for handling load and store operations. The 
most noticeable change in the memory subsystem is in the cache hierarchy. In 
the prior generation of microarchitecture, the first level of cache was private to 
a core while the second level of cache was shared between pairs of cores. In this 
generation, we moved to having two levels of cache that are dedicated to the 
core and a third level that is shared between cores and is located in the Uncore.

The first-level data cache remains 32 kilobytes in size and continues to use a 
writeback policy. Also, we left the cache line size and associativity the same—
64 bytes and 8-ways, respectively. The load-to-use latency of the first-level data 
cache increased from three cycles to four cycles in this generation. We added a 
new second level, or mid-level, cache (MLC) that is 256 kilobytes in size, also 
with 64-byte lines and 8-way set associative. It is also a writeback cache. The 
MLC was designed to achieve high performance through a low, 10-cycle, load-
to-use latency. The MLC is a unified cache, holding both instructions and data. 
Cache misses from both the first-level instruction cache and from the first-level 
data cache look up the MLC on cache misses. 

The rationale for adding a second level of cache dedicated to each core was 
twofold: 

 • We decided to move to having a last-level cache shared between all cores. 
Having such a shared cache allows the entire cache to be used by any subset 
of the cores, in line with our goal of not penalizing applications that cannot 
take advantage of all cores. Therefore, we needed the MLC to buffer the 
last-level shared cache from a high rate of requests coming from all of the 
cores. This bandwidth buffering also enables greater scalability in core 
counts, so that as we build products with larger core counts, we do not 
necessarily need to make any changes to the CPU core. 

 • Provide a middle latency alternative between the very fast first-level cache 
and the third-level cache that would be much slower. By adding this cache, 
we optimize the overall effective latency (weighted latency average) across a 
wide range of workloads. 

Beyond the caching hierarchy, we also updated the Translation Lookaside 
Buffer (TLB) hierarchy inside the core with the addition of a second-level 
TLB (STLB). The STLB is 512 entries in size and can hold both instruction-
page and data-page translations. The workloads that benefit most from this 
structure have large data and code working sets, for example, sets often seen in 
high-performance computing and database workloads. By adding the STLB, 
numerous page walks can be eliminated, resulting in a performance gain—as 
page walks can be costly operations.

“In this generation, we moved to 

having two levels of cache that are 

dedicated to the core and a third level 

that is shared between cores.”

“We added a new second level, or 

mid-level, cache (MLC) that is  

256 kilobytes in size.”

“Cache misses from both the first-level 

instruction cache and from the first-

level data cache look up the MLC on 

cache misses.”
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In addition to the STLB, the 32nm version of this microarchitecture 
(Westmere family) also adds support for 1GB pages. Prior to this technology 
generation, the page sizes supported were 4KB, 2MB, and 4MB. With the 
appropriate operating system support, larger page sizes offer the opportunity 
for higher performance by again reducing the number of page walks that are 
needed to read a given page. Table 2 details each level of the TLB hierarchy.

# of Entries

first Level Instruction TLBs

Small Page (4k) 128

Large Page (2M/4M) 7 per thread

first Level Data TLBs

Small Page (4k) 64

Large Page (2M/4M) 32

New 2nd Level Unified TLB

Small Page Only 512

Table 2: TlB hierarchy Description

Another set of memory cluster optimizations made in this microarchitecture 
generation revolved around unaligned memory accesses to the first-level data 
cache. Specifically, two optimizations were made to improve performance on 
these types of operations. 

The first optimization relates to 16-byte SSE vector load and store operations. 
The SSE architecture defines two forms of 16-byte memory accesses, one that 
can be used when the memory location being accessed is aligned on a  
16-byte boundary (for example, the MOVDQA instruction), and a second 
form that allows any arbitrary byte alignment on these operations (for example, 
the MOVDQU instruction). The latter case is important because compilers 
often have to be conservative when generating code; they cannot always 
guarantee that a memory access will be aligned on a 16-byte boundary. Prior 
to this, the aligned form of these memory accesses had lower latency and 
higher throughput than the unaligned forms. In this new microarchitecture 
generation, we optimized the 16-byte unaligned memory access instruction to 
have the same latency and throughput as the aligned version, for cases that are 
aligned. By doing this, compilers are free to use the unaligned form in all cases 
and not have to worry about checking for alignment considerations.

The second optimization in the first-level data cache is for memory accesses 
that span a 64-byte cache line. As vectorization becomes more pervasive, we 
are seeing the need to improve the performance on these operations, as the 
compiler, again, cannot guarantee alignment of operations in many cases. With 
this generation of processors, we took significant steps to reduce the latency of 
these cache-line split accesses through low-level, microarchitectural techniques.

“This microarchitecture (Westmere 

family) also adds support for 1GB 

pages.”

“We optimized the 16-byte unaligned 

memory access instruction to have 

the same latency and throughput as 

the aligned version, for cases that are 
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through low-level, microarchitectural 

techniques.”
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The final area of optimization in the memory subsystem was synchronization 
latency. As more threads are added to systems, and as software developers 
recognize that there are significant performance gains to be had by writing 
parallel code, we want to ensure that such code is not severely limited by the 
need to synchronize  threads. To this end, we have been working to reduce the 
latency of cacheable LOCK and XHCG operations, as these are the primitives 
used primarily for synchronization. In this processor generation, we reduce both 
the latency and side-effect costs of these operations. The significant reduction in 
latency was achieved through careful re-pipelining. We also worked to minimize 
the pipeline stalls that these synchronization operations caused. Prior to this 
technology, all memory operations younger than the LOCK/XCHG had to wait 
for the LOCK/XCHG to complete. However, there was no architectural reason 
that we had to be this conservative, so this time around, we allow younger load 
operations to proceed even while an older LOCK/XCHG is still executing, as 
long as the other instructions do not overlap with the LOCK/XCHG in the 
memory they are accessing. This improvement does not show up in the latency of 
the LOCK/XCHG instructions, but it does show up in overall performance by 
allowing subsequent instructions to complete faster than in previous processors.

Intel® Hyper-Threading Technology
Even with all of the techniques previously described, very few software 
applications are able to sustain a throughput near the core’s theoretical 
capability of four instructions per cycle. Therefore, there was still an 
opportunity to further increase the utilization of the design. To take advantage 
of these resources, Intel Hyper-Threading Technology, which was first 
implemented in the Intel Pentium® 4 processor family, was re-introduced to 
improve the throughput of the core for multi-threaded software environments 
in an extremely area- and power-efficient manner.

The basic idea of Intel Hyper-Threading Technology is to allow two logical 
processors to execute simultaneously within the core. Each logical processor 
has its own software thread of execution state. Because a single software 
thread rarely fully exploits the peak capability of the core on a sustained 
basis, the central idea was that by introducing a second software thread, we 
could increase the overall throughput of the CPU core. This design yields an 
extremely efficient performance feature, since a minimal amount of hardware is 
added to provide this performance improvement.

Several key philosophies went into the design of Intel Hyper-Threading 
Technology in this processor generation:

 • When Hyper-Threading Technology is enabled, but only a single software 
thread is scheduled to a core, the performance of that thread should be 
basically identical to when Intel Hyper-Threading Technology is disabled. 
This behavior was achieved by making sure that resources that are shared or 
partitioned between logical processors can be completely used when only 
one thread is active.
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the latency of cacheable LOCK 

and XHCG operations, as these are 

the primitives used primarily for 

synchronization.”
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core’s theoretical capability of four 

instructions per cycle.”

“Intel Hyper-Threading Technology, 

which was first implemented in the 

Intel Pentium® 4 processor family, was 

re-introduced.”

“Because a single software thread 

rarely fully exploits the peak capability 

of the core on a sustained basis, the 

central idea was that by introducing 

a second software thread, we could 

increase the overall throughput of the 

CPU core.”
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 • There are points in the processor pipeline where the logic has to either 
operate on one thread or the other. When faced with these arbitration 
points, design the selection algorithm to achieve fairness between the 
threads. Therefore, if both threads are active and have work to do, the 
arbitration points will use a “ping-pong” scheme to switch between  
the two threads on a cycle-by-cycle basis. 

 • When faced with an arbitration point in the pipeline, if only one thread 
has work to do, allow that thread to get full bandwidth. It is often the case 
that at an arbitration point in the pipeline, only one thread has work to 
do. If that case occurs, we designed the core to give full bandwidth to that 
thread until the other thread has work to do. In other words, we do not 
unnecessarily constrict throughput by ping-ponging between the threads 
unless both threads are active and have work to do.

Given these principles, decisions still had to be made on how various structures 
are handled in the face of Intel Hyper-Threading Technology. Four different 
policies were available for managing structures and are summarized in Table 3:

 • Replicated: For structures that were replicated, each thread would have its 
own copy of the structure. If only a single thread were active in the core, the 
structures for the other thread would be unused. The most obvious example 
of this type of scheme is in the case of the architectural state. Each thread 
must maintain its own architectural state so the structures that hold that 
state, such as the retired RF, must be replicated. Cases that are replicated 
represent a real area and power cost for Hyper Threading Technology, but 
the number of cases where structures are replicated is limited.

 • Partitioned: For structures that are partitioned, when two threads are 
active, each one is able to access only half of the structure. When only a 
single thread is active, we make the entire structure available to that thread. 
Prime examples where we partitioned structures are the various control 
buffers: reorder, store, and load. By partitioning structures, we guarantee 
each thread a set of resources to achieve reasonable performance. Moreover, 
partitioning of structures typically comes at only a small cost for managing 
the structures, but without any increase in the area or the power of the 
structures themselves.

 • Competitively shared: For structures that are competitively shared, we 
allow the two threads to use as much of the structure as they need. The best 
example of this scheme is the caches on the processor. In the caches, we do 
not limit a thread to a percentage of the cache. Therefore, if two threads are 
active, we allow one thread to occupy a majority of the cache, if that is what 
its dynamic program behavior demands.

 • Unaware: Finally, there are parts of the core that are completely unaware 
that Hyper-Threading Technology exists. The execution units are the best 
example of this, where the computed result is not affected by which thread 
is doing the computation. 

“We do not unnecessarily constrict 

throughput by ping-ponging between 

the threads unless both threads are 

active and have work to do.”

“By partitioning structures, we 

guarantee each thread a set of resources 

to achieve reasonable performance.”
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Policy Description Examples 

Replicated Duplicate logic per thread Register State

Renamed RSB

Large Page ITLB

Partitioned Statically allocated between 
threads

Load Buffer

Store Buffer

Reorder Buffer

Small Page ITLB

Competitively 
Shared

Depends on thread’s dynamic 
behavior

Reservation Station

Caches

Data TLB

2nd level TLB

Unaware No impact Execution units

Table 3: Comparison of Intel® hyper-Threading Technology Policies

The key arbitration points in the pipeline that we needed to consider when 
implementing Hyper-Threading Technology are these:

 • Instruction Fetch: We support only one read of the Instruction Cache per 
cycle; therefore, we need to arbitrate between the two threads to decide 
which one gets to read the cache in any given cycle.

 • Instruction Decode: In any given cycle, the bytes from only one thread 
can be decoded into µops.

 • Allocation: We can allocate resources (ROB entries, store/load buffer 
entries, RS slots) only to a single thread each cycle.

 • Retirement: Similarly, when we retire µops and reclaim their resources, we 
can only work on a single thread in a given clock cycle.

Note that the RS is not a point of arbitration between the threads. The RS 
schedules µops to the execution units without regard to which thread they 
belong to. Instead, its decisions are based upon which instructions are ready 
to execute and then choosing the “oldest,” as measured by when they allocated 
into the RS.

The overall performance benefit of Hyper-Threading Technology varies 
depending on the nature of the software application in question. Some 
applications do not benefit from this technology. For example, applications 
or benchmarks, like Streams, that are memory bandwidth-bound when not 
using Hyper-Threading Technology will likely not see a performance benefit 
when Hyper-Threading is enabled, because no additional memory bandwidth 

“The overall performance benefit of 

Hyper-Threading Technology varies 

depending on the nature of the 

software application in question.”
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is made available by using this technology. Another category of applications 
that will not benefit are those that already operate near the peak throughput 
of four instructions per clock or near the peak of another execution’s resource, 
since that means that no idle resources can be exploited by the other thread. 
Linpack* is a primary example of a benchmark that falls into this category [3].

However, since there are very few workloads that operate near the CPU’s 
peak IPC capabilities, there is ample opportunity for software to benefit from 
Intel Hyper-Threading Technology. Various reports on real-world workloads 
have shown that the performance boost can vary significantly based on the 
workload. Facebook has shown 15% higher throughput on one of their 
production workloads due to the use of Hyper-Threading Technology [4]. 
Citrix Systems has shown that Hyper-Threading Technology provides a 57% 
increase in the number of users that could be consolidated onto a server [5]. 
Additionally, measurements on the SpecMPI2007* benchmark suite, a high-
performance computing proxy, have shown gains ranging from 22% to 35% 
depending on the specific benchmark with an overall 9% impact on the final 
benchmark score [6].

New Instructions and Operations
Another means of improving performance in a power-efficient manner is 
through the addition of new instructions that software can exploit. New 
instructions improve overall power efficiency by completing in a single 
instruction a task that previously was handled by multiple instructions. We can 
achieve higher performance at lower power through the addition of these new 
instructions. Of course, exploiting the benefit of the new instructions requires 
software to be rewritten or re-compiled. Pre-existing software will not see a 
benefit from these instructions. 

New instructions were introduced in both the 45nm (Nehalem) and 32nm 
(Westmere) versions of the core. The instructions were chosen because they 
offered significantly higher performance on critical and common operations in 
computing today.

In the 45nm version of the Nehalem microarchitecture, seven new instructions 
were added for performance, as well as new virtualization functionality and 
new timestamp counter (TSC) functionality. Full specification details on 
these instructions can be found in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual Volumes 2A and 2B [7]. The seven new instructions were 
branded as SSE4.2 and comprise the following:

 • PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM: These 
four instructions accelerate manipulation operations on text strings. Such 
operations can be helpful, for instance, when parsing a stream of XML or 
doing regular expression comparisons. These instructions offer powerful 

“Citrix Systems has shown that Hyper-

Threading Technology provides a 57% 

increase in the number of users that 

could be consolidated onto a server.”

“New instructions improve overall 

power efficiency by completing in 

a single instruction a task that 

previously was handled by multiple 

instructions.”

“Seven new instructions were branded 

as SSE4.2.”
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capabilities such as identifying substrings within a string, finding a specific 
character in a string, or finding a range of characters, such as finding all 
numbers, in a string. The instructions operate on the 128-bit SSE register 
set, allowing for processing of 16 bytes at a time per operation. An example 
usage has shown roughly a 25% average throughput improvement on 
parsing XML by use of these new instructions [8].

 • POPCNT: This instruction returns the number of 1’s that are set in an 
integer register. This is a common operation in recognition and search 
algorithms.

 • CRC32: This instruction accelerates the computation of a Cyclic 
Redundancy Check (CRC) by using the iSCSI polynomial, which is used 
in several networking protocols [9]. Additionally, this type of operation can 
also be used to provide a fast hash function. 

 • PCMPGTQ: This instruction compares two SSE integer vector registers 
and checks for a “greater than” condition.

Two other architecture-visible features were added to the Nehalem 
microarchitecture. Specifically, support was added for a constant time stamp 
counter, which aids timing across deep sleep states. Additionally, enhanced 
page table (EPT) support was added that allows virtualization vendors to avoid 
shadow page tables, removing a source of performance overhead when running 
in virtualized environments. Coupled with EPT, two instructions (INVVPID, 
INVEPT), were added to the architecture to support invalidations of EPT 
translation caches.

In the Westmere architecture, seven new instructions were added that focus 
on providing instructions to accelerate the performance of cryptographic 
operations. These operations are prevalent today in computing in areas such 
as Web commerce and in setting up secure transactions between a host and a 
client. The seven new instructions are as follows:

 • AESENC, AESENCLAST, AESDEC, AESDESCLAST, 
AESKEYGENASSIST, AESIMC: This collection of six instructions can 
be used together to accelerate encryption and decryption by using the 
Advanced Encryption Standard (AES) [10]. With these instructions, 
performance gains three to ten times better than previous-generation 
technology performance have been achieved on commercial software [11].

 • PCLMULQDQ: This instruction performs a carryless multiply operation. 
A Galois (binary) field multiply consists of the carryless multiply followed 
by a reduction. Galois fields are common in cryptographic operations, such 
as AES as well as cyclic redundancy checks, elliptic curve cryptography, and 
error correcting codes. AES Galois Counter Mode is probably the most 
widely known application of PCLMULQDQ [12]. 

“This instruction accelerates the 

computation of a Cyclic Redundancy 

Check (CRC) by using the iSCSI 

polynomial, which is used in several 

networking protocols [9]. Additionally, 

this type of operation can also be used 

to provide a fast hash function.”

“In the Westmere architecture, seven 

new instructions were added that focus 

on providing instructions to accelerate 

the performance of cryptographic 

operations.”

“Galois fields are common in 

cryptographic operations, such as AES 

as well as cyclic redundancy checks, 

elliptic curve cryptography, and error 

correcting codes.”
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 • Also in the Westmere processor architecture, the page table support, when 
running in virtualized environments, was further enhanced to support real-
mode guests. This design substantially reduces the time required to boot 
virtual machines through BIOS as well as reduces the time to execute device 
option ROMs.

These new instructions focus on accelerating specific usage models for critical 
and common tasks. Going forward, we will continue to look for opportunities 
for such targeted acceleration opportunities, as well as more general-purpose 
instruction-set additions, such as the upcoming Intel Advanced Vector 
Extensions (AVX). Full details on AVX are available in the Intel Advanced Vector 
Extensions Programming Reference [13].

Segment-Specific Features
In this section, we detail a few examples of new segment-specific features, and 
we discuss some of the tradeoffs that were made in their design.

Physical and Virtual Addressing
The client segment platforms, mobile and desktop, typically support a 
maximum of 4GB-8GB of main memory; large sever systems need to support 
very large memory capacities, on the order of 100 GBytes or more. This 
wide range of requirements provides a very stark set of tradeoffs. Additional 
address bits needed for large memory systems have little value in the client 
segments, but they do consume extra power. In addition to increasing power 
consumption and adding area, additional address bits can cause stress on the 
timing of critical paths in the machine, such as address generation for cache 
look-ups. To strike a balance between how many address bits to add, we settled 
on a modest two physical address bits over the Core 2 microarchitecture, but 
we did not increase the virtual address bits from the number in previous-
generation technology. Our rationale was that physical address bits are critical 
to enable certain large systems, and that the number of virtual address bits was 
already adequate to enable operating systems for the server systems that needed 
to be built. 

Reliability Features
To satisfy large server systems, we enhanced the reliability features found in the 
prior-generation architecture. Reliability features come in two major categories: 
enhancements to the Machine Check Architecture (MCA) and enhancements 
to the design and microarchitecture. To achieve the targets for “soft error rates” 
we set to enable scaling to the socket and processor counts needed. For both 
of these feature additions, it is important to keep in mind that the cores were 
designed to meet the requirements of high-end, multi-processor servers with 
8-10 cores per socket and up to 8 sockets. Clearly the requirements set by these 
high-end server systems far exceed the ones that are set by the client segments.

“We settled on a modest two 

physical address bits over the Core 2 

microarchitecture, but we did not 

increase the virtual address bits from 

the number in previous-generation 

technology.”

“Because the Westmere core would be 

used mostly in the same platforms as 

the Nehalem core, we opted against 

adding additional addressing bits in 

the Westmere version.”
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For machine-check enhancements, we added more reporting capabilities for 
various failure modes to increase coverage and insights into state for diagnostic 
software. The cost of MCA features is not high in power, area, or design effort; 
however, due to its complexity it is a fairly substantial cost against the project’s 
validation budget. A reasonable balance of added features included looking at 
the tradeoffs between value and validation cost.

We also added Soft Error Rate (SER) features to meet scalability requirements. 
Deciding what SER features to add was arrived at by carefully modeling 
possible failure behavior and also looking at a careful modeling of possible 
and critical failure behaviors to determine the protection of specific micro-
architectural assets. The SER features we added included items such as parity 
on various structures. To further add high-end server reliability, we also added 
a mode where the first-level data cache operates at half the size with additional 
data reliability protection enabled. This cache mode is a customer-enabled 
option for the expandable server (EX) product line, where customers are 
willing to trade some performance for additional reliability.

Power Features
Low average power is important to battery life for traditional productivity 
workloads and for battery life for specific usages, like video, DVD, or 
streaming media playback usages. For this generation of processors, we 
modeled the impact of both of these usage cases when making feature 
decisions. At a high level, there are two aspects to achieving a good average 
power behavior: 1) being able to run at a low power for a minimum 
performance point, and 2) being able to transition in and out of low power 
states quickly, making sure that the power consumed in these low power states 
is as low as possible.

Achieving a low-power operating point is valued by the server segment, where 
it enables more cores to be aggregated in a socket. To achieve this operating 
point, we typically work on lowering the power consumption in general and 
specifically lowering the minimum voltage at which the core can operate 
(MinVCC). Having a low MinVCC provides a very efficient way to reduce the 
power due to the cubic scaling we discussed earlier. Due to the cubic benefit 
from lowering the operating voltage, even small changes have very beneficial 
effects. There is typically an area tradeoff involved in the device sizing needed 
to achieve a low MinVCC, which is a factor to take into account for the overall 
product cost.

Efficient low-power states, also known as C-states, and quick entry and exit 
into and out of those states are features that are fairly uniquely valued by the 
client mobile segment. At a high level, the lower the power is for a C state, the 
more power we save. Moreover, the faster we can enter and exit these states, the 
more often we can utilize them without harming overall system performance 
characteristics. We added new low-power states, made the power in those states 
lower, and optimized entry and exit latencies.

“For machine-check enhancements, 

we added more reporting capabilities 

for various failure modes to increase 

coverage and insights into state for 

diagnostic software.”

“Cache mode is a customer-enabled 

option for the expandable server (EX) 

product line, where customers are 

willing to trade some performance for 

additional reliability.”

“Efficient low-power states, also 

known as C-states, and quick entry 

and exit into and out of those states 

are features that are fairly uniquely 

valued by the client mobile segment.”

“We added new low-power states, 

made the power in those states 

lower, and optimized entry and exit 

latencies.”
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Integration and Scalability
We also added features to make it easier to integrate cores into a large scalable 
processor and to better utilize the power for such multi-core systems.

To achieve better performance scaling in systems with high core counts, we 
added the previously mentioned MLC to reduce the bandwidth requirement 
of the core-Uncore interface. The benefit of the MLC is two-fold. It adds 
performance by, on average, improving the perceived latency of memory 
accesses through its low latency and by not overtaxing the bandwidth at the 
shared last-level cache in the Uncore.

Additionally, the Nehalem generation of processors supports buffers that allow 
the core to independently run at a different frequency than the Uncore they 
are attached to. This is a key power-efficiency feature where we can adjust the 
frequency of the core and the Uncore individually to operate at the best power/
performance efficiency point. For example, we can set the Uncore frequency to 
match the desired performance of external interfaces, such as memory speed, 
while we let the cores independently run at the frequency that is demanded by 
the task, as asked for by the operating system.

Building on the ability to dynamically run the cores at a different frequency, 
and isolating a core from the Uncore, this generation of microarchitecture 
also supports power gates, where the power to the cores can be completely 
turned off when the core is not being used. This feature is important for 
mobile average power as it prevents draining of the battery when the core 
is doing nothing. Power gates are also key enablers for Intel Turbo Boost 
Technology which dynamically allows active cores to run at higher frequencies. 
Fundamentally, the turbo boost feature allows products built with this 
generation of cores to dynamically use the full-power envelope without 
artificially limiting the performance of the cores. With this technology, the 
frequency of active cores can scale up if there is power headroom. Power gates 
help this by eliminating the power overhead of idle cores. However, even when 
all cores are active, Intel® Turbo Boost Technology can kick in and increase the 
frequency of all cores if the workload being run is not power intensive. This 
technology helps satisfy the philosophy of not penalizing customers whose 
software does not take advantage of all cores.

Conclusion
The Nehalem and Westmere architecture is designed to work efficiently for a 
wide range of operating points, from mobile to high-end server. High-value, 
segment-specific features were added, while at the same time taking care 
that the power overhead could be absorbed by all segments. Intel achieves 
the needed increase in efficiency of both power and performance through 
appropriate buffer size increases and more intelligent algorithms. These 
changes were made without fundamentally affecting the pipeline latencies 
of the baseline design. The changes deliver exciting features and a superior 
performance increase inside equal or lesser power envelopes.

“We can set the Uncore frequency 

to match the desired performance 

of external interfaces, such as 

memory speed, while we let the cores 

independently run at the frequency 

that is demanded by the task.”

“The power to the cores can be 

completely turned off when the core is 

not being used.”

“The frequency of active cores can scale 

up if there is power headroom.”
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