
PIPELINING
basics

• A pipelined architecture for MIPS
• Hurdles in pipelining
• Simple solutions to pipelining hurdles
• Advanced pipelining
• Conclusive remarks

1

MIPS pipelined architecture
• MIPS simplified architecture can be realized by having

each instruction execute in a single clock cycle,
approximately as long as the 5 clocks required to
complete the 5 phases. Why would this approach be
unconvenient?

• We already know one reason:
the longer cycle would waste time in all instructions that
take less to execute (fewer than 5 clocks).

2

• There is another relevant reason:

• By breaking down into more phases (clock cycles) the
execution of each instruction, it is possible to (partially)
overlap the execution of more instructions.

• At eack clock cycle, while a section of the datapath takes
care of an instruction, another section can be used to
execute another instruction.

3

MIPS pipelined architecture

• If we start a new instruction at each new clock cycle, each of the 5
phases of the multi-cycle MIPS architecture becomes a stage in the
pipeline, and the pattern of execution of a sequence of instructions
looks like this (Hennessy-Patterson, Fig. A.1):

4

instr.
number

1 2 3 4 5 6 7 8 9

instr. i IF ID EX MEM WB

instr. i+1 IF ID EX MEM WB

instr. i+2 IF ID EX MEM WB

instr. i+3 IF ID EX MEM WB

instr. i+4 IF ID EX MEM WB

MIPS pipelined architecture

• Pipelining only works is one does not attempt to execute at
the same time two different operations that use the same
datapath resource:

– as an instance, if the datapath has a single ALU, this cannot
compute concurrently the effective address of a load and the
subtraction of the operands in another instruction

• Using reduced (simple) instructions (namely RISC) makes
it fairly easy to determine at each time which datapath
resources are free and which are busy.

• This is very important to best exploit CPU resources
(expecially, when deploying multiple issue: launching more
instructions in parallel) 5

MIPS pipelined architecture

• Why are phases WB and ID highlighted in clock cycle 5?
What is peculiar with them?

• Let instruction i be a load, and i+3 be an R-type: in cycle 5
the result from instruction i is being written in the register
file and the operands for instruction i+3 are being read from
the same file.

• Well, it looks like we are trying to use the same resource in
the same clock cycle for two different instructions …

6

MIPS pipelined architecture

• Actually, this is allowed at those functional units that can be
used twice during different phases of the same clock cycle.

• In the following figure depicting the execution pattern of a
load instruction, each phase is associated to the unit is uses:
the dotted part shows that the unit is not used in that portion
of the clock cycle (adapted from Patterson-Henessy, fig.
6.4):

• The register file is written in WB in the first half of the
clock cycle, and it is read in ID in the second half of the
clock cycle.

7

IM
IF

Reg
ID

ALU
EX

DM
MEM

Reg
WB

CC1 CC4CC3CC2 CC5

MIPS pipelined architecture

The MIPS pipeline can be though of as a series of datapaths shifted in
time, each one for each instruction being executed. Please, note the
graphic notation (dotted lines) for the register file usage. (Hennessy-
Patterson, Fig. A.2):

8

MIPS pipelined architecture

• The pipeline drawing of the previous chart calls for two
observations:

1. It is mandatory that there exist distinct memory units (caches)
for data (DM) and instructions (IM); this prevents conflicts
between IF and MEM phases. Both phases access memory,
that is used 5 times more than with no pipelining. The memory
subsystem must be capable of handling the increased workload.

2. The drawing does not show the PC, that is incremented
at each clock cycle in the IF phase (unless the instruction itself
updates the PC in its execution phase, as is the case with JUMP
and BRANCH instructions).

9

MIPS pipelined architecture

Pipeline registers

• In actual implementations, each pipeline stage is separate
and connected to the following one by special pipeline
registers (invisible to the user of the CPU, namely the
program in execution).

• At the end of each clock cycle, the results of the operations
in a stage are stored in a pipeline register that will be used
as a source by the next stage in the next clock cycle.

• These pipeline registers also buffer intermediate results to
be used by non-adjacent stages of the pipeline (more details
on this later)

10

Pipeline registers
• The pipeline registers have the same role (and actually

embed) of the internal registers introduced to transform the
single-cycle MIPS architecture into the multi-cycle
versione: IR, A, B ALUoutput, and MDR.

• They serve the purpose of transferring outputs produced
in a phase to the subsequent phase in the multi-cycle
implementation.

• An assembly line offers a simple analogy: each worker in a
stage completes the work on the current piece, then places it
in a bin, to be collected by the next worker in the line.

11

• We shall refer to the pipeline registers that are set between
two stages with the names of the stages. So, we will have
IF/ID, ID/EX, EX/MEM and MEM/WB registers.

• These registers must be large enough to contain all data
moving from one phase to the following one (Patterson-
Hennessy,fig. 6.11, see next chart. See also Hennessy-
Patterson, Fig. A.18).

12

Pipeline registers

Pipelined MIPS Architecture

13

Pipelined MIPS Architecture
• Notably, there is no pipeline register after the WB phase,

that is when the result is being written into its final
destination.

• Indeed, at the end of this stage all instructions must update
some part of the ISA visible processor state: the register file,
memory (which one ?) or the PC.

• As an instance, a R-type instruction modifies a register, and
the value available in the output register can be stored
directly in the destination register specified in the
instruction, to be used by subsequent instructions (we will
come back on this naive hypothesis in the sequel…)

14

The pipeline datapath with pipeline registers between successive stages
(Hennessy-Patterson, fig. A.3):

15

IF/ID ID/EX EX/MEM MEM/WB

Program
execution
order of the
(instructions)

Pipeline registers

Instruction flow within the pipelined
MIPS

16

• Let us explain the pipeline operation by tracking the flow of
a LOAD instruction.

• In the drawings, blocks representing memory and registers
(both pipeline and register file ones) are blue highlighted in
their right half when they are read, and in their left half
when they are written.

• The blue highlight indicates active functional units in each
phase.

17

• Instruction Fetch: the instruction is read from the Instruction
Memory at the address in the PC, and it is placed into IF/ID.
(Patterson-Hennessy, fig. 6.12a)

Instruction flow within the pipelined
MIPS

18

• Instruction Fetch: The PC is incremented and written back, but is is
also stored in IF/ID, since it could be used in a later phase (at this
point, the instruction to be executed is not decoded nor fully known).

Instruction flow within the pipelined
MIPS

19

• Instruction Decode: the IF/ID register is read to address the register
file. Both addressed registers are read, even should only one be
actually used later. The 16 bits of the immediate operand are
converted to a 32-bit, and the three data are stored along with the PC
in ID/EX

Instruction flow within the pipelined
MIPS

20

• EXecution: the LOAD reads in ID/EX the content of register 1 and
the immediate, sums them using the ALU and writes the result into
EX/MEM. (Patterson-Hennessy, fig. 6.13).

Instruction flow within the pipelined
MIPS

21

• EXecution: if the execution is a BRANCH (or a JUMP), the adder
uses the PC value (available ID/EX) to compute the new PC value (it
will be used only if the BRANCH is taken)

Instruction flow within the pipelined
MIPS

22

• MEMory: the data memory is accessed, using the value available in
EX/MEM as address. The data read is stored into MEM/WB.
(Patterson-Hennessy, fig. 6.14a).

Instruction flow within the pipelined
MIPS

23

• Write Back: The LOAD destination register is written with the data
read from memory (Patterson-Hennessy, fig. 6.14b).

• Question: where is the id of the destination register ?

Instruction flow within the pipelined
MIPS

24

• Pipelining is not a simple as it appears so far: in this datapath, when
an instruction reaches the WB stage, the IF/ID register already
contains the id of the destination register of a successive instruction!

• To avoid loading the data into the wrong register, the LOAD
instruction cannot simply store the id of its destination register in
IF/ID, because it would be overwritten at the next clock by a new
instruction in its IF stage.

• In the various execution steps of the LOAD, the id of the destination
register must be tranferred from IF/ID to ID/EX, to EX/MEM and
eventually to MEM/WB, to be used to address the correct register
during WB.

Instruction flow within the pipelined
MIPS

25

• Here is a correct datapath to handle the load: the destination register id
flows through all pipeline registers to be available during WB. The
pipeline registers must be extended to store this value as well (how
many more bits?) (Patterson-Hennessy, fig. 6.17)

Instruction flow within the pipelined
MIPS

Performance
• The pipeline (with its increased hardware) makes the

complete execution of an instruction longer than its
counterpart in a not-pipelined datapath

• But the CPU throughput increases, so programs execute
faster (how much faster ?)

• Let us consider a CPU with no pipeline and the following
characteristics:

– ALU and branch operations take 4 clock cycles.
– Memory opearations take 5 clock cycles.
– ALU op. = 40%; branch = 20%; memory acc. = 40%.
– clock = 1 ns. 26

Performance
• What is the average execution time for an instruction?

Avg. exec time = (0,4 + 0,2) x 4ns + 0,4 x 5 ns = 4,4 ns.

• Let us now assume that the CPU is indeed pipelined, and
that the overhead caused by the hardware for pipelining is
0,2 ns (a reasonable value). Then:

speedup = avg. exec time without pipeline / avg. exec time with
pipeline = 4,4 ns / 1,2 ns = 3,7.

• A (theoric) performance speedup of 3,7.

27

Performance

28

MEM MEMALU ALU

Control in the Pipeline

29

Control
Unit

Pipelined control

Instruction

Control in the Pipeline

30

Pipelined control: datapath control points

Pipelining hazards
• Unfortunately, pipelining is not that simple! There are

three types of problems (hazards) that limit the
effectiveness of pipelining:

1. Structural hazards : conflicts in datapath resources,
arising when a specific combination of instructions cannot
be executed simultaneously in the pipeline

2. Data hazards : conflicts due to a data dependency, when
an instruction depends on the result (not yet available) of a
previous instruction

3. Control hazards : pipelined branch execution, that can
change the PC and instruction flow 31

Pipelining hazards
• When an hazard arises, it is necessary to stop (to stall) the

pipeline: some instructions can proceed, while other are
delayed.

• We can assume that when an instruction IS causes an
hazard in the pipeline (the simple pipeline we are
considering so far):

– instructions issued earlier than IS can proceed to their commit,

– instructions issued later than IS (thus in pipeline stages
preceding IS) are stalled as well.

• In the following, we consider some basic solutions to the
three types of hazards.

32

Structural hazards
• Usually, structural hazards arise because some hardware

resources within the datapath cannot be duplicated (due to
their complexity or to excessive production costs), and are
requested at the same time by two different instructions in
the pipeline.

• As an instance, a single L1 cache for data and instructions
would continuosly cause structural hazards, and this is
why L1 caches are separate.

• Another hazard arises if two instructions cannot use the
same ALU during the same clock cycle.

33

Structural hazards

• In modern CPUs (actually, in less recent ones as well),
many functional units (especially combinatorial ones) are
replicated many times (we’ll consider a few case in the
following).

• This requires more complex circuits, with increased costs
and complexity.

• A balance must be found among design requirements,
performance, power consumption and production costs.

34

Data hazards

• Data hazards arise because instructions are correlated (un-correlated
instructions are no algorithm at all!); usually instructions use values
produced by preceding ones.

• Let us examine the following sequence of instructions:

DADD R1, R2, R3 // R1 [R2] + [R3]
DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9

XOR R10, R1, R11
• R1 is written by DADD in stage WB, but DSUB should read this

value in stage ID, before it is actually produced! 35

Data hazards

36

IF/ID ID/EX EX/MEM MEM/WB

The use of
DADD result
in successive
instructions
causes a
hazard,
because the
R1 register is
written after
the
instructions
try to read it
(Hennessy-
Patterson,
Fig. A.6)

Data Hazards

• Have a look at the AND: R1 is written at the end of clock
cycle n. 5, but it is read from the AND in cycle n. 4.

• The OR works with no problem at all, since it reads R1 in
the second half of clock cycle n. 5, and the register has just
been written in the first half of the same clock cycle.

• Lastly, the XOR works fine as well.

37

Data hazards: forwarding

• A“simple” technique to solve these hazards is known as
forwarding (also bypassing, or short-circuiting)

• The “trick” is to make the results of an instruction (the
DADD in the example) available to the following ones as
soon as possible, even before the WB phase of the DADD.

• The pipeline registers can be used to this purpose;
indeed, they store the intermediate results of the various
stages in the pipeline.

38

Data hazards: forwarding

• Please, note that :

1. The output of the ALU produced in the EX stage is stored
in the EX/MEM register and passed on to MEM/WB
register, and can be re-used as input by the ALU itself in
following clock cycles.

2. If the Control Unit detects that a preceding instruction is
writing a result that has to be re-used immediately as input
to the ALU, it fetches such value from the proper pipeline
register, instead of waiting for it to be available in the
destination register.

39

Data hazards: forwarding

40

IF/ID ID/EX EX/MEM MEM/WBForwarding
allows to
prevent some
data stalls
(Hennessy-
Patterson, Fig.
A.7)

Data hazards: forwarding

41

Forwarding
unit

Register
Bank

Data
Memor
y

Data hazards: forwarding

42

Forwarding
unit

Register
Bank

Data
Cache

Instr
Cache

Data hazard: a stall

• Forwarding cannot solve all possible stalls due to data
dependencies. Let us consider the following code
fragment:

LD R1, 0(R2) // address [R2] + 0
DSUB R4, R1, R5

AND R6, R1, R7
OR R8, R1, R9

43

Data hazard: a stall
• The data addressed by the LD will be loaded into

MEM/WB only at the end of clock cycle 4, while the
DSUB requires it at the beginning of the same clock cycle.

• Whenever a load is executing, its targeted data is not
available within the CPU until is is fetched from the cache
(or, even worse, from RAM), and it cannot be used by any
following instruction, and this actually stalls the pipeline.

• The pipeline circuitry detects this situation and stalls
subsequent instructions (for a single clock cycle, in the
best case) until the value they require is available.

44

Data hazard: a stall

45

IF/ID ID/EX EX/MEM MEM/WBThe LD can
forward its data
to the AND and
to the OR, not
to the DSUB
(Hennessy-
Patterson, Fig.
A.9)

Data hazard: a stall

46
Forwarding

unit

Hazard
detection
unit

Control
Unit

• Hazards detection unit: checks for producer-consumers
dependencies that cannot be solved through forwarding

• It stalls the pipeline (If and ID phases) and produces a
“bubble” (a NOP with proper control signals)

Register
Bank

Data
Cache

Instr
Cache

Control hazards

• Control hazards arise when a branch is executed, since it
can either change the value of the PC or leave it uneffected.

• Even assuming an aggressive implementation which uses
two clock cycles for the branch, if the branch is taken, the
PC is not updated until the end of the second clock cycle, in
the ID stage, after the address to be stored in the PC is
actually computed.

• Thus, the instruction that is located immediately “after” the
branch (at the address PC+4) has already completed the IF
phase. What if it was not the one to issue, since the branch
is taken?

47

Control hazards

• Let us consider the following example:

LD R1, 0 (R4)

BNE R0, R1, else

DADD R1, R1, R2

JMP next

else: DSUB R1, R1, R3

next: OR R4, R5, R6

• When the branch decision will be known, the DADD has
already completed its IF phase.

48

Control hazards
• A simple approach is to carry out the fetch phase of the

instruction that follows the branch (that is, DADD).

• At the end of the ID phase of the branch, it is known if the
branch will be taken or not. If not, everything is OK and the
DADD proceeds in its ID phase.

• If the branch is taken, the instruction to be issued is the
DSUB, which starts with its IF phase: so, a clock clycle is
lost, that for the IF phase of the DADD.

branch instr. IF ID EX MEM WB

branch succ. IFDADD IFDSUB ID EX ...

branch succ.+1 IFOR ID EX
49

Control hazards

• Obviously, there is a waste in clock cycles, and the amount
lost depends on the frequency of branches in a programme,
and of the success (or fail) of each specific branch.

• In the example just considered, the waste due to a branch is
one clock cycle at the most, since we assume that the
datapath is able to complete a branch in two clcok cycles.

• More complex branch instructions can require more clock
cycles, and the waste can be larger accordingly. In CISC
instructions this was the usual pattern (can you give an
example ?)

50

Control hazards

• Control hazards involve the management of three different
actions:

– instruction deconding (D)

– nextPC (jump-to) address computation (A)

– condition evaluation (C)

• Modern processors have superscalar pipelines (with up to
14 stages)

51

D A C

Potential waste

Control hazards

Some statistics

• Jump amount to 2%-8% in integer benchmarks.

• Branch amount to 11%-17%.

• in loops, 90% of branches are taken

• in generic IF, 53% are taken, of these 75% are forward

52

Control hazards
• A different approach is to make an a-priori prediction on

the outcome of the branch. This is the so-called static
branch prediction. As an instance, the pipeline hardware
might make the following assumptions:

1. Backward branches are always taken

2. Forward branches are never taken

and continue fetching the instruction following the
branch in either case (how can this be realized?)

• However, if the prediction turns out to be wrong, the
instruction issued “by mistake” must be turned into a no-
op, and it is necessary to fetch the “correct instruction.

53

Control hazards

• If most predictions are correct, the waste is minor.

• As an instance, in a loop executed many times, the
backward jump is executed most times, and the forward
jump is executed only once, when the loop exits.

• Forward jumps are usually used for exceptions, to transfer
control to the associated routine. Hopefully, exceptions
should be rare...

• This kind of prediction best suites the simple if then
else… construct

54

Control hazards

• Another technique, common in the first RISC
architectures, is the so-called delayed branch.

• It consists of placing, right after the branch, instructions
that do useful work, independently of the outcome of the
branch.

• The instructions are executed throughout, and the branch
is evaluated (taken or not) and acts accordingly on the PC.

• This technique requires action on the compiler side, and
cannot be easily applied in all cases (the compiler plays a
key role in improving CPU performance).

55

• The branch delay slot is the set of instructions that are
“conditionally” fetched and sent to the pipeline stages.

• Scheduling the branch delay slot is not easy, and the
probability for the compiler to find “good” instructions to
be placed in the delay slot rapidly decreases with the slot
length.

• Let us assume (simplified pipeline) that the branch delay
slot is 1-instruction wide.

Control hazards

56

C

Branch delay slot

Control hazards

57

Case (a) is
easily handled
by the
compiler, but
as to the
others...
(Hennessy-
Patterson, Fig.
A.14).

Control hazards

58

Possible ONLY if the assignements in the
delay slot «cause no harm»:
 registers assigned to in the delay slot are
NOT read before they are assigned AGAIN

if R1=0 then go to label
DSUB R4,R5,R6
INSTR A (does not read R4)
INSTR B (does not read R4)
….
ADD R4,R7,R8 OK | SUB R5,R6,R4 WRONG

The last execution of DSUB is «wrong» but it
is wiped out by the ADD. The SUB instead
would read a wrong value.

Control hazards

59

Possible ONLY if the assignements in the
delay slot «cause no harm»:
 registers assigned to in the delay slot are
NOT read before they are assigned AGAIN

OK
OR R7,R8,R9
DSUB R4,R5,R6
ADD R7,R8,R9

WRONG
OR R7,R8,R9
DSUB R4,R5,R6
ADD R8,R7,R9

Exceptions
• Interrupts, traps, faults, other exceptions that alter the flow

of instructions make the operations of a pipeline very
difficult to manage, since instructions are overlapped in
their execution.

• In the most general case, whenever an instruction IS raises
an exception, the pipeline must be frozen, instructions
after IS should be allowed to complete execution, and
those before IS should be restarted from scratch, only after
the exception has been taken care of.

• We do not consider the details of the implementations,
just keep in mind that this is indeed a very complex task,
that increases consistently the hardware complexity in the
pipeline. 60

Exceptions in integer pipeline
• 5 instructions executing in 5 pipeline stages

– how is the pipeline stopped?

– what about restart

– who actually caused the interrupt?

– exceptions can be raised in a time sequence that violates the in-
order restart mode of instructions.

• Precise exception: the set of instructions in the pipeline is
divided into two sub-sets A and B by the instruction I that
raises the exception: <A I B> with B entered BEFORE

• B is completed, I is serviced and, if recoverable, I is re-
scheduled, and A comes after I

61

Exceptions in integer pipeline
• types of exceptions – synchronous mode

• 5 instructions executing in 5 pipeline stages
– IF page fault on instruction fetch; misaligned memory

access; memory-protection violation

– ID undefined/illegal op-code

– EX arithmetic exception (overflow, divide_by_zero, …)

– MEM page fault on data fetch, misaligned memory
access; memory-protection violation; memory error

– WB none

62

Exceptions in integer pipeline
• Exceptions raised out-of-order

– The sequence of fetched instructions is PC1, PC2, PC3,PC4,PC5

– PC1 raises the exception in MEM, PC2 in ID

– The sequence of raised exceptions is therefore PC2, PC1

– Precise exception management is NOT possible, because during
the servicing of the exception raised by PC2 a further exception
will be raised by PC1 that is in stage EX when PC2 raises its
exception !!

63
IF EX MEM WBID

PC5 PC3 PC2 PC1PC4

Exceptions in integer pipeline
• Precise exception management

– Instructions that raise exceptions set a control flag (plus
additional info) but are not immediately worked upon

– Exceptions are serviced ONLY at the MEM/WB transition

– A single exception of a single instruction is serviced and a single
PC is restored (if the exception is recoverable)

– The assumption is that the state of the machine is committed only
after the MEM/WB transition

– This is a general approach is the previous assumption holds true

64

Enhanced pipelines

• The 5-stage pipeline architecture was used already
in the first RISC processors, and it is still in use in
low-end processors aimed at embedded
applications.

– nintendo-64 game processor / dreamcast

– Processor in laser printers, cameras, video
camcoders,…

– routers

65

Enhanced pipelines

• So, if pipelining allows for an effective architecture, what
about using two pipelines? As long as:

– it is possible to concurrently fetch two instructions from
Instruction Memory,

– the two instructions, issued together, do not conflict in accessing
the registers, and

– they do not depend on each other

• there will be a further gain in computation

• Of course, even in this architecture, hazards must be
minimized either at compile time, or at run-time (using
techniques to be examined later) 66

Enhanced pipelines
• A two-pipeline architecture with five stages (approx.) has

been used in the Pentium (the INTEL processor just after
the 80486). Pipeline u could execute any instruction,
while pipeline v could handle only simple integer-type
instructions (Tanenbaum, Fig. 2.5)

67

BTW, what is “peculiar” in this scheme, with
reference to a RISC architecture ?

Enhanced pipelines
• Instructions are executed “in-order”, that is in the order

specified by the program (well, can you do otherwise ?)
and a few fixed rules established if the two instructions
are“compatible”, so that they can be executed in parallel.

• If not, only the first instruction is issued, and a coupling is
attempted between the second and the third, and so on …

• Specific compilers targeted to the Pentium were capable
of producing code with a high number of “coupled
instructions”

• A Pentium with an optimizing compiler ran code twice
faster than the 486, at the same clock frequency.

68

Enhanced pipelines
• Of course, one can think of multiple (>2) pipelines operating in

parallel, but modern architectures have taken a different route,
introducing more functional units in the EX stage (Hennessy-
Patterson, Fig. A.29)

69

Enhanced pipelines

• Actually, in a CPU executing a fairly complete set of
instructions, some instructions have an EX phase much
longer than the other phases:

– Add/subtraction of floating point numbers

– Multiply/division of integer numbers

– Multiply/division of floating point numbers

• it is possible to carry out these operations in a single, very
long clock cycle, but this would slow down uselessly the
other phases, which can do with a much shorter clock
cycle.

70

Enhanced pipelines
• The EX phase can use a short clock when it carries out an

integer operation (add/subtraction), a logical operation
(AND, OR, XOR), or a register comparison.

• The best approach is:

1. using a short clock cycle, that suites phases IF, ID, MEM,
WB, and EX as well, when it executes a simple integer
instruction

2. using functional units working with more clock cycles or
themselves pipelined (the usual case) for longer
operations, that take more time to execute.

71

Enhanced pipelines
• Pipeline with multiple functional units for the MIPS

architectture (Hennessy-Patterson, Fig. A.31):

72

Enhanced pipelines
• The drawing in the previous slide depicts fairly well the

high level operation of modern architectures. It highlights
some properties shared by all modern CPUs:

1. the length of the pipeline depends on the type of the instruction
in execution, with more complex instructions requiring more
clock cycles.

2. multiple instructions can be concurrently in their EX phase. In
the case instance just considered, up to 4 floating point sum ops,
and 7 integer of FP multiplications, all of then active.

• (A technical remark: in many cases, the division functional unit
operates in more phases, but it is not pipelined)

73

Enhanced pipelines

• Floating point instructions in the enhanced pipeline are
completed out-of-order:

– The POE (Plane of Execution) prepared by the compiler is:
PC1 FDIV F10,F12,F13
PC2 FMULT F1,F2,F3
PC3 FADD F4,F5,F6
PC4 ADD R1,R2,R3

– The ROE (Record of Execution), namely the completions of the instructions
carried out by hw is

PC4 ADD R1,R2,R3
PC3 FADD F4,F5,F6
PC2 FMULT F1,F2,F3
PC1 FDIV F10,F12,F13

74

Enhanced pipelines

• Out-of-order completion is not a problem if data
dependencies are preserved, provided no exceptions are
raised:
– The POE (Plane of Execution) prepared by the compiler is:

PC1 FDIV F10,F12,F13
PC2 FMULT F1,F10,F3
PC3 FADD F4,F5,F6
PC4 ADD R1,R2,R3

– The ROE (Record of Execution), namely the completions of the instructions
carried out by hw is

PC1 FDIV F10,F12,F13
PC4 ADD R1,R2,R3
PC3 FADD F4,F5,F6
PC2 FMULT F1,F10,F3 75

Enhanced pipelines

• Exceptions introduce huge complexities. Precise exception
management is no longer feasible as it is with integer
pipelines, because the MEM/WB transition does not
serialize instructions in-order.
– The POE (Plane of Execution) is:

PC1 FDIV F10,F12,F13
PC2 FMULT F1,F2,F3 raises exception
PC3 FADD F4,F5,F6
PC4 ADD R1,R2,R3

– The ROE (Record of Execution) is
PC4 ADD R1,R2,R3 execution completed !
PC3 FADD F4,F5,F6 WB
PC2 FMULT F1,F2,F3 exception serviced
PC1 FDIV F10,F12,F13

76

Enhanced pipelines

• Floating point instructions and exceptions: two machine
modes/states

Øa) un-precise FP exception: high-speed execution

Øb) precise FP exception: slow-down of execution

• a) Some applications tolerate un-precise FP management
(mostly in graphics): they are compiled with FP libraries
that do not enforce the precise management state and are
executed by disregarding most exceptions (underflow, n.a.n.,
even overflow)

77

Enhanced pipelines

• b) Applications that depend on correct FP values activate
the precise FP management state: they are compiled with
standard FP libraries and are handled as follows:

• The pipeline at issue time (ID) sends the FP instruction to the
proper functional unit FU

• The FU establishes in one clock cycle if the instruction will raise
an exception – meanwhile the ID stage is frozen, thus effectively
wasting one clock cycle (slow down)

• If no exception will be raised, the ID stage issues the next
instruction – otherwise the IF and ID are frozen until the exception
has been serviced

78

Pipeline static scheduling

• The pipeline scheme considered so far assumes that
instructions are executed in-order (serially, one after
another), according to the PC sequence. In case of a
structural or data hazard (the latter not being solved by
forwarding), the pipeline is stalled. This scheme is called
static scheduling

• Modern CPUs often adopt some type of dynamic
scheduling of the pipeline, by changing instructions order
of execution, to reduce stalls (we’ll cover this subject
later)

79

Superscalar architectures
• Architettures having multiple functional units for the EX

phase, are usually called superscalar architectures.

• To be precise, an architecture can defined superscalar if it
can fetch (and issue) in the same clock cycle multiple
instructions in the IF phase. This feature is useful only if
there are multiple functional units in the EX stage that can
work in parallel (more on this subject when we discuss
Instruction Level Parallelism)

• A superscalar architecture requires a larger datapath,
capable of transferring more instructions from one stage to
the next in the pipeline.

80

Concluding remarks
• To sum up, why are RISC architectures well matched to

pipelining?

1. All instructions have the same length: this simplifies
fetching from memory (during IF) and decoding (during
ID).

• In the 80x86 ISA (also known as IA-32) instructions have
variable lengths, from 1 to 17 bytes, so that fetching and
decoding are more complex.

• Actually, all current implementations of IA-32 translate
the instructions into internal “micro-operations” (uops),
similar to the MIPS format. It is the upos that are executed
in the pipeline, not native native IA-32 instructions (this
will be discussed later) 81

Concluding remarks

2. The ISA of a typical RISC machine has a reduced
number of instruction formats (types), and in every
format source registers are in the same position.

• This simplified scheme allows reading the register file
while at the same time the instruction is being decoded, all
of this during ID.

• If this were not possible, it would be necessary to split ID
into two stages (Instruction Decode and Operand Fetch),
with a longer pipeline ! (go back to figure 2.5 in
Tanenbaum…)

82

Concluding remarks

3. In RISC architectures, memory operands are allowed
only in load and store instructions: this constraint
allows using stage EX to compute the memory address
and the succeeding stage (MEM) to actually access
memory.

• If memory operands could be used in other instructions
(as in CISC architectures), 3 stages would be required: i)
to compute the address, ii) to access memeory, iii) to carry
out the operation.

• And memory is indeed THE bottleneck in the execution of
instructions !

83

