B1) Let us consider a pipeline with the following in-order stages: Fetch (IF), and Decode (DEC), and an out-of-order, dynamic speculative execution unit, for integer, floating point, and memory access instructions. The Commit (CO) phase is carried out in program order.
Speculation is carried out through a ROB and a number of Reservation Stations: the ROB has 8 entries. There is a single reservation station for each of the following Functional Units:
· Int1 for arithmetic, logical, address computation, branch and jump
· Fadd1 floating point add/subtraction
· Fadd2 floating point add/subtraction
· Fmolt1 floating point and integer multiplication
· Fmolt2 floating point and integer multiplication
· Fdiv1 floating point division
Load and store instructions are carried out through special purpose buffers:
· Load1
· Load2
· Store1
· Store2
The execution model for the dynamically scheduled out-order unit is described in an associated state transition diagram. All functional units are blocking (no internal pipelining).
The ISA supports 28 integer registers (R1-R28) and 28 floating point registers (F0-F27). All instructions have a 4-byte format.
The memory hierarchy consists of the following caches:
L1 D-cache, 2-way, 16 KB, block length 16 bytes;
L1 I-cache, direct mapped, 8 KB, block length 8 bytes;
L2 unified cache, 4-way, 512 KB, block length 32 bytes.
Caches are pipelined, non blocking. Latencies and hit/miss times are as follows:

	Int - 1
	Hit L1 – 1

	Fmolt – 4
	Hit L2 – 3

	Fadd - 2
	Miss L2 – 6

	Fdiv - 5
	

Further assumptions:
a) no BP, no BTB;
b) the code of B2) is already loaded in the caches;
c) L1 D-cache is empty
d) hit/miss costs in the hierarchy are incremental: a hit in L2 has an overall cost of 1+3 clock cycles.

B2) The following code executes operations on arrays X() and Y(), both 100 elements of 8-byte floating point data. X() is allocated from 0[R1], Y() from 0[R2], and [R3]=100 at the beginning.

PC1 Loop LD F1,0(R1) ; loads X(i)
PC2 SUBI R3,R3,1
PC3 ADDI R1,R1,8
PC4 ADDF F3,F2,F1 ; F2 has a values computed before Loop
PC5 LD F4,0(R2) ; loads Y(i)
PC6 SD -16(R1),F3
PC7 MULTF F5,F1,F2
PC8 ADDF F6,F1,F4
PC9 MULTF F5,F6,F5
PC10 SD 0(R2),F6
PC11 SD 512(R2),F5
PC12 ADDI R2,R2,8
PC13 BNEZ R3,Ciclo

1) Enumerate the timing of the state transitions for each instruction in the first 2 iterations (highlighting all conflicts). Assume the time of issue for PC1 is 1.
2) Show the contents of the reservation stations at the issue time of PC9.
3) Show the ROB’s content at the issue time of PC13 in the first iteration (specify the head and tail positions within the ROB).

Dynamically scheduled, speculative execution – Tomasulo’s algorithm
data structures
De-coupled ROB RS model

	
	INSTRUCTION
	
	STATE

	
	ROB
	WO
	RE
	DI
	EX
	WB
	RR
	CO

	PC1 LD F1,0(R1) (miss)
	0
	
	1
	2
	3-12
	13
	14
	15

	PC2 SUBI R3,R3,1
	1
	
	1
	2
	3
	4
	5-14
	15

	PC3 ADDI R1,R1,8
	2
	
	2
	3-4
	5
	6
	7-19
	20

	PC4 ADDF F3,F2,F1
	3
	2-13
	14
	15
	16-17
	18
	19
	20

	PC5 LD F4,0(R2) (hit)
	4
	
	3
	4
	5-6
	7
	8-22
	23

	PC6 SD -16(R1),F3 (hit)
	5
	3-18
	19
	20
	21
	-
	22
	23

	PC7 MULTF F5,F1,F2
	6
	4-13
	14
	15
	16-19
	20
	21-23
	24

	PC8 ADDF F6,F1,F4
	7
	
5-13
	14
	16
	17-18
	19
	20-23
	24

	PC9 MULTF F5,F6,F5
	0
	
	
	
	
	
	
	

	PC10 SD 0(R2),F6 (hit)
	1
	
	
	
	
	
	
	

	PC11 SD 512(R2),F5 (hit)
	2
	
	
	
	
	
	
	

	PC12 ADDI R2,R2,8
	3
	
	
	
	
	
	
	

	PC13 BNEZ R3,PC1
	4
	
	
	
	
	
	
	

	PC1 LD F1,0(R1)
	5
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	Reservation Stations (RS)

	
	Busy
	Op
	Vj
	Vk
	ROBj
	ROBk
	Rob entry
	Ind

	Int1
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	FAdd1
	
	
	
	
	
	
	
	

	FAdd2
	
	
	
	
	
	
	
	

	FMolt1
	
	
	
	
	
	
	
	

	FMolt2
	
	
	
	
	
	
	
	

	FDiv1
	
	
	
	
	
	
	
	

	Load1
	
	
	
	
	
	
	
	

	Load2
	
	
	
	
	
	
	
	

	Store1
	
	
	
	
	
	
	
	

	Store2
	
	
	
	
	
	
	
	

ROBj ROBk: sources of operands not yet available
ROB entry: position in the ROB of the instruction

	
	Result Register status

	Int
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	R12
	R13
	R14

	ROB #
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	status
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Int
	R15
	R16
	R17
	R18
	R19
	R20
	R21
	R22
	R23
	R24
	R25
	R26
	R27
	R28

	ROB #
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	status
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Float
	F0
	F1
	F2
	F3
	F4
	F5
	F6
	F7
	F8
	F9
	F10
	F11
	F12
	F13

	ROB #
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	status
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Float
	F14
	F15
	F16
	F17
	F18
	F19
	F20
	F21
	F22
	F23
	F24
	F25
	F26
	F27

	ROB #
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	status
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Reorder Buffer (ROB)

	Entry #
	Busy
	Op
	State
	Destination
	Value

	0
	
	
	
	
	

	1
	
	
	
	
	

	2
	
	
	
	
	

	3
	
	
	
	
	

	4
	
	
	
	
	

	5
	
	
	
	
	

	6
	
	
	
	
	

	7
	
	
	
	
	

WO
RE
DI
EX
WB
RR
CO
queue

Decoupled execution model
The state diagram depicts the model for a dynamically scheduled, speculative execution microarchitecture equipped with a Reorder Buffer (ROB) and a set of Reservation Stations (RS). The RSs are allocated during the ISSUE phase, denoted as RAT (Register Alias Allocation Table) in INTEL microarchitectures, as follows: a BUNDLE od 2 instructions if fetched from the QUEUE of decoded instructions and ISSUED if there is a free BUNDLE of 2 entries in the ROB (head and tail of the ROB queue do not match); a pair of instructions are moved into RS (if available) when all of their operands are available. A couple of dispatched instrutions are moved to the UF – LOAD/STORE buffers one at a time. BUNDLEs of Ready-to-Retire instructions are committed in order.

States are labelled as follows:
WO:	Waiting for Operands (at least one of the operands is not available)
RE:	Ready for Execution (all operands are available)
DI:	Dispatched (posted to a free RS)
EX:	Execution (moved to a load/store buffer or to a matching and free UF)
WB:	Write Back (result is ready and is returned to the Rob by using in exclusive mode the Common Data Bus CDB)
RR:	Ready to Retire (result available or STORE has completed)
CO:	Commit (result is copied to the final ISA register)
State transitions happen at the following events:
 from QUEUE to WO:	ROB entry available, operand missing
from QUEUE to RE:	ROB entry available, all operands available
loop at WO:	waiting for operand(s)
from WO to RE:	all operands available
loop at RE:	waiting for a free RS
from RE to DI:	RS/LOAD-STORE Buffer available
loop on DI:	waiting for a free UF/waiting for cache (if not pilined)
from DI to EX:	UF available – cache available
loop at EX:	multi-cycle execution in a UF, or waiing for cache, or waiting for CDB
from EX to WB:	result written to the ROB with exclusive use of CDB
from EX to RR:	STORE completed, branch evaluted
loop at RR:	instruction completed, not at the head of the ROB
from RR to CO:	instruction at the head of the ROB, no exception raised
Resources
Register-to-Register instructions hold resources as follows:
ROB: from state WO (or RE) up to CO, inclusive;
RS: state DI
UF: EX and WB
Load/Store instructions hold resources as follows:
ROB: from state WO (or RE) up to CO, inclusive;
Load buffer: from state DI up to WB
Store buffer: from state DI up to EX (do not use WB)
Forwarding: a write on the CDB (WB) makes the operand available to the consumer in the same clock cycle. If the consumer is doing a state transition from QUEUE to WO or RE, that operand is made available; if the consumer is in WO, it goes to RE in the same clock cycle of WB for the producer.
Branches: they compute Next-PC and the branch condition in EX and optionally forward Next-PC to the “in-order” section of the pipeline (Fetch states) in the next clock cycle. They do not enter WB and go to RR instead.

