Syllabus Attività Formativa

Anno Offerta	2022							
Corso di Studio	06415 - COMPUTER ENGINEERING							
Regolamento Didattico	06415-1222							
Percorso di Studio	00 - PERCORSO COMUNE							
Insegnamento/Modulo	504712 - ADVANCED COMPUTER ARCHITECTURE - ADVANCED COMPUTER ARCHITECTURE							
Attività Formativa Integrata	-							
Partizione Studenti	-							
Periodo Didattico	S1 - Primo Semestre							
Sede								
Anno Corso	1							
Settore	ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI							
Tipo attività Formativa	B - Caratterizzante							
Ambito	50369 - Ingegneria informatica							
CFU	6.0							
Ore Attività Frontali	62.0							
AF_ID	412543							

ſ	Tipo Testo	Codice Tipo	Num.	Ob	Testo in Italiano	Testo in Inglese
		Testo	Max.	bl.		
			Caratteri			

Lingua insegnament o	LINGUA_INS	8000	Sì	INGLESE	English
Prerequisiti	PREREQ	8000	No		Basic understanding of computer architecture: Von-Neumann machine, CU, busses, memory architecture and addressing modes. Elementary assembly language. Knowledge of the MIPS architecture and instruction set. Basic notions on operating systems: process, thread, mutual exclusion. The C-language is required for the programming lab and associated project.
Obiettivi formativi e risultati di apprendiment o	OBIETT_FORM	8000	Sì		The course describes the architecture of modern processors and multi-processors and introduces the principles of parallel programming. The student will understand the principle of operation of current processors and will be able to assess the distinctive features of general purpose vs embedded microprocessors vs special purpose accelerators (GPUs & tensor flow processors). The emerging multi-core paradigm, the associated shared-memory architecture will be discussed, as well as distributed memory one. The latter will be the basis for a parallel programming project to be developed in MPI.

				The Google Cloud platform will be used for
				instantiating VMs with enough cores to
				effectively test the parallel project.
Programma e	CONTENUTI	8000	Sì	The course is split into two major areas: a
contenuti				description of the architectures and a
				laboratory on parallel programming. Part I -
				The processor. This part of the course
				introduces the basic concepts underlining the
				design of modern processors. The Instruction
				Set Architecture (ISA). A Taxonomy for ISAs:
				CISC, RISC, general purpose, embedded,
				multimedia, thread & tensors. Basic
				pipelining: control, hazards, exceptions.
				Superscalar pipelines: static multiple issue,
				the VLIW approach. Dynamic scheduling,
				speculative execution. Compiler support and
				software optimization. Caches and memory
				hierarchy: locality. Structure and
				organization: direct mapping, associativity.
				Pipelined and multi-level caches. Part II -
				Multi-processors. A review of multi-
				processors and parallel architectures, with
				emphasis on multi-core processors. Parallel
				processing: SIMD, MIMD, data parallelism,
				thread parallelism, coarse-grain parallelism.
				Parallel architectures: shared-memory,
				distributed memory, clusters. GPU and
				tensors flow architectures. Part III - Parallel

				programming. An introduction to parallel processing, with hands-on lab on MPI. The available paradigms: SMP, MPI, graphics and CUDA. The OpenMp standard (hints)
Metodi didattici	METODI_DID	8000	Sì	Lectures (hours/year in lecture theatre): 32. Practical class (hours/year in lecture theatre): 12. Practicals / Workshops (hours/year in a lab): 18. Lectures are delivered through presentations posted on the course web site.
Testi di riferimento	TESTI_RIF	8000	Sì	 1) Ferretti, D. Gunetti. Course charts (in pdf). available for download form the course website 2) J. L. Hennessy & D. A. Patterson. Computer Architecture: A Quantitative Approach, 3rd - 4rth and 5th editions. Elsevier - Morgan Kaufmann. See detailed instructions on the course website for editions and chapters to be used. 3) D. A. Patterson & J. L. Hennessey. Computer Organization and Design: The Hardware/Software Interface, Revised 4th Edition. Morgan Kauffman. See detailed instruction in the Course website for chapters to be used.

Modalità di verifica dell'apprendi mento	MOD_VER_AP PR	8000	Sì	The final assessment consists of a parallel programming project, of a discussion of the project and of a written test (oral examination is optional). Written test and project each weight 50% in final grade. They can be taken in any order and separately. The project should be prepared by a group of two persons at the most. While the written test can be taken by each individual, project delivery and discussion must be taken by all participant in the group.
Altre informazioni	ALTRO	8000	No	Free access for a limited amount of computing resources to the Google Cloud Platform will be made available to registered students to develop the final project. Credential will be distributed in due time, must be activated within two months, and expired in 12 months from activation.
Obiettivi Agenda 2030 per lo sviluppo sostenibile	OB_SVIL_SOS	4000	No	