
Introducing modern
computer architectures

• a simple RISC architecture

• single cycle instruction execution

• multi-cycle instruction execution

• RISC vs CISC architectures

1

Basic concepts

• Microarchitecture: the internal structure of a processor,
and its datapath: namely, the path instructions go through
when executed.

• In the following, we shall use freely the terms
“microarchitecture”, “architecture” or “internal
architecture” (in a processor).

• ISA: Instruction Set Architecture. The set of machine
instructions of a processor. Two distinct processors can
have the same ISA but different microarchitectures (that is,
two different ways to execute those instructions)

2

A simple RISC architecture
• We begin with a simple RISC microarchitecture (can

you tell what RISC stands for ?), that executes fixed-
length, 32-bit instructions.

• It is actually a simplified version of MIPS, the first RISC
architecture (to us, straightly a modern architecture),
designed by J. Hennessy in the early 80’s.

• To begin with, we shall consider the “integer” section of
the architecture only: instructions operate on integer
registers (add, sub, etc.), memory (load, store) and PC
(branches, unconditional and conditional).

3

A simple RISC architecture

• We shall cover mainly the datapath of the CPU, with
only some hints to the control unit: the section that
controls and synchronizes the different datapath blocks
during instruction execution.

• We shall however insist on two main features of a modern
RISC machine:

1. machine instructions are simple;

2. as a consequence, the control unit is simple too, and there
is no need for a complex microprogram to steer machine
instruction execution within the CPU.

4

A simple RISC architecture

• The architecture has (at least) 32 general purpose integer
registers, each 32-bit in depth. In MIPS, as well as in most
machines, register R0 is special and always stores 0 (the
same is true of 64-bit architectures).

• Since we do not consider floating point operations, the
architecture we describe has neither floating point
registers nor functional units (datapath blocks) to process
floating point data.

5

MIPS instruction format
• A generic MIPS instruction has the following format:

6

• op: class of operation
• reg_1: source register 1
• reg_2: source register 2
• reg_dest: destination register
• shift: used in shift ops on registers
• funct: specifies the type of the operation within its class

op reg_1 reg_2 reg_dest shift funct
6 bit 5 bit 5 bit 5 bit 5 bit 6 bit

bit 0bit 31

Fields in MIPS instructions
• With these fields we can describe the following format:

• R-type instructions: have one or two register operands
and produce the result in a third register. As an instance:

– DADD R1, R20, R30 // R1 [R20] + [R30]

7

0 20 30 1 not-used 32

– DSUB R5, R11, R12 // R5 [R11] – [R12]

0 11 12 5 not-used 34

Fields in MIPS instructions

• A few notes:

• a “D” prefix usually denotes an integer instruction (one
which acts on integers); “F” is used for floating point.

• In the symbolic notation, the first register is the
destination register.

• In the two instructions just considered, “op = 0” denotes
only that both operations use the ALU, act on two
registers and store the result in a third one. It is the funct
field that specifies the exact operation (an add, a sub, a
multiply, and so on).

8

Fields in MIPS instructions

• Instruction fields can have other functions. In I-type
instructions, that use an immediate as operand (an
integer), the layout of fields is the following:

• As an instance:

– DADDI R5, R1, 1500 // R5 [R1] + 1500

• The op fields takes on a different value, and the
immediate value is represented with 16 bits.

9

op reg_1 reg_dest immediate value

8 1 5 1500

Fields in MIPS instructions

• This format can be used also for load/store.
instructions. As an instance:

• LD R1, 128(R4)

– loads into R1 4 bytes from main memory, starting from the
byte at address 128 + [R4]

– SD R1, 252(R4)

– stores the content of R1 in memory, starting at the address
252 + [R4]

10

35 4 1 128

43 4 1 252

Fields in MIPS instructions

• The final format includes:

• branch instructions (conditional):

• as an instance: BNE R1, R2, 100 // jump if R1<>R2

• jump instructions (unconditional) :

• as an instance: JMP 10000

11

op offset

5 1 2 25

op reg_1 reg_2 offset

4 2500

Fields in MIPS instructions
• Note that we are skipping a lot of details. As an instance,

what about conditional jump addresses larger than 216
bytes (this is indeed important, can you tell why?)

• What about procedure calls ?
– (usually, a subset of the registers – 4 in MIPS – are used for

parameter passing, another subset – 2 in MIPS – for the result)

• What about 32-bit constants ?

• These items are basic issues, all to be addressed and
solved in any real implementation, but not mandatory to
understand the operation of a modern CPU.

12

A single cycle version of MIPS

• MIPS instructions execution is similar for any type of
instruction (this is true of all RISC architectures).

• The first two steps are actually always identical in any
instruction:

1. the PC is used to fetch from memory instruction the instruction
to be executed (Instruction Fetch)

2. Instruction decoding and reading one or two registers, using the
proper instruction fields to select the register(s)

13

A single cycle version of MIPS

• After the first two steps, the subsequent actions depend on
instruction type:

– memory access

– arithmetical-logical operation

– branch/jump

• nethertheless, actions are almost the same within each
instruction type, and different instructions types share
many actions.

14

A single cycle version of MIPS

• As an instance, all instructions (except jump) use the
ALU.

• Instructions are completed in different modes :

– Load and Store access data memory, and Loads updates a
register

– Arithmetical-logical instructions update a register

– Jump/branch instructions change (conditionally, in branches) PC
value

15

A single cycle version of MIPS
• Here is a high level sketch of MIPS datapath, highlighting

the main functional units and their interconnections. Note
the separate memory units for instructions and for data.
More on this in the following.
(Patterson-Hennessy, fig. 5.1)

16

A single cycle version of MIPS

• In the following drawing: a high level schemeof MIPS
datapath, with the control unit, the multiplexers to select
the correct inputs, and the signals to control functional
units and muxes.
(Patterson-Hennessy, fig. 5.2)

• Get acquainted with this high level scheme (and the
following ones), that is common to all modern
architectures (in its basics blocks, of course).

17

A single cycle version of MIPS

18

A single cycle version of MIPS

• Each instruction can be executed in this datapath in a
single clock cycle: the clock cycle has to be long enough
for each instruction to flow through all sections of the
datapath it requires for its execution.

• To understand its operation, let us recall that the datapath
of any processors is made up of two types of logical
elements (we refer to them as a whole as functional units):
state and combinational elements.

19

A single cycle version of MIPS

1. state elements allow to store a value, such as a flip-flop,
and, in the MIPS datapath, registers and memories.

• a state element has at least two inputs and one output.
Inputs include : 1) the value to be stored and 2) the clock,
that establishes when the value is actually stored (usually,
on the rising edge / falling edge of the clock cycle).

• at any time, the value available at the output of a state
element is the one stored in the preceding clock cycle.

20

A single cycle version of MIPS
2. combinational elements: the outputs depend only on the

values available at the inputs at a given instant (one must
allow for some propagation delay through the logical
gates that make up the element), such as the ALU the
muxes.

• At a higher abstraction level, the single cycle execution of
an instruction within the datapth can be depicted as in the
following picture: (Patterson-Hennessy, fig. B.7.2)

21

A single cycle version of MIPS
• For a correct operation, it is necessary that the clock cycle

be long enough so that inputs to a state element become
stable before the clock edge stores them into the element

• Note that two state elements can coincide: (Patterson-
Hennessy, fig. 5.4).

• In this case, during the first part of the clock cycle, the
state element transfers the value to the combinational
logic (reading phase). This in turn produces an output that
will be stored in the same element during the second part
of the same clock cycle (writing phase).

22

A single cycle version of MIPS
• In MIPS datapath, an instance is the increment of the

Program Counter at each new clock cycle, with the help of
a dedicated ALU. The PC is used in every cycle to fetch
from the instruction memory the next one to be executed.
(Patterson-Hennessy, fig. 5.6)

23

The Register File
• In the datapath we are considering, the CPU general

purpose registers are depicted as a single functional unit
called “Registers”.

• Actually, these registers are assembled in a structure made
up of actual memory units (the registers) and of a control
logic, that allows to access each register by specifying its
number and the type of access (read or write).

• This structure is called register file. It works as a normal
memory bank, internal to the CPU, very small and
extremely quick.

24

The Register File
• The external interfaces of the register file. The WE (Write Enable,

RegWrite in our datapath) control signal is output from the control
unit. If asserted, it allows to write the output from the ALU
(DSTdata) into the destination register (DSTaddr) specified in the
instruction.

25

The Register File
• Write operations into the register file are controlled by a

specific signal; read operations are “immediate”: at any
time, the register file outputs on SRC1data and SRC2data
the content of registers addressed through inputs
SRC1addr and SRC2addr

26

A simple Control Unit
• To set up a CU (Control Unit) in MIPS it is necessary to

define the control signals for the ALU, that receives two
inputs (which ones?) and transforms them into an output
according to four control signals (an hypothetical scheme
could be):

27

ALU control Operation
0000 AND
0001 OR
0010 addition
0110 subtraction
0111 set on less than

... ...

A simple Control Unit

• Control signals for the ALU can be generated by a simple
ALU control sub-unit (a part of the CU) that receives in
input:

– the “funct” field of the executing instruction

– two control bits “ALUop” from the CU, that depend on the op
field of the instruction, and establish if the operation to be
carried out is a sum for a load or store, a subtraction, or is further
chosen on the basis of the “funct” field.

28

op reg_1 reg_2 reg_dest shift funct

A simple Control Unit
• Patterson-Hennessy, fig. 5.12:

29

Op ALUop operation funct ALU
function

ALU
control

load 00 load word xxxxxx sum 0010
store 00 store word xxxxxx sum 0010
branch eq. 01 branch eq. xxxxxx subtraction 0110
tipo-R 10 somma 100000 sum 0010
tipo-R 10 sottrazione 100010 subtraction 0110
tipo-R 10 AND 100100 and 0000
tipo-R 10 OR 100101 or 0001
tipo-R 10 set on less than 101010 set on less than 0111
...

ALUcontrol INPUT

ALUcontrol
OUTPUT

op reg_1 reg_2 reg_dest shift funct

A simple Control Unit

• ALUop bits are produced by the
CU and are used as input (with
“funct” bits) to the ALU control
sub-unit

30

A simple Control Unit
• ALUcontrol is the logic circuit that realizes the truth table

that maps inputs bits ALUcontrol (ALUop + funct) into
the outputs, the 4 ALU control bits (Patterson-Hennessy,
fig. 5.13):

31

ALUop0 ALUop1 F5 F4 F3 F2 F1 F0 ALUcontrol
0 0 x x x x x x 0010
x 1 x x x x x x 0110
1 x x x 0 0 0 0 0010
1 x x x 0 0 1 0 0110
1 x x x 0 1 0 0 0000
1 x x x 0 1 0 1 0001
1 x x x 1 0 1 0 0111
...

A simple Control Unit

• Here is ALUcontrol (empty dots negate inputs to the OR
gate). The two most significant bits in “funct” are not
used (x stands for “don’t care”). Patterson-Hennessy, fig.
C.2.3.

32

A simple Control Unit

• The design of the main CU follows the steps outlined for
ALU control.

• The main Control Unit has in input the 6 bits of the “op”
instruction field (bits 31-26) and has to output control
signals for :

– enabling registers write (RegWrite)

– controlling data memory read and write (MemRead and
MemWrite)

– setting the muxes (RegDst, ALUSrc, MemtoReg, PCsrc)

– controlling the ALU (ALUop, the two signas just discussed)
33

A simple Control Unit
• The MIPS datapath with all signals generated from the

CU. Note the new mux for write selection at the inputs of
the register file (Patterson-Hennessy, fig. 5.15)

34

A simple Control Unit

• In the next chart, a table listing the purpose of each
control signal (excluding ALUOp, already described), with
the action resulting when asserted (set to 1) and when left
unasserted (set to 0). Patterson-Hennessy, fig. 5.16.

35

36

signal action if unasserted action if asserted

RegDst the destination register number
for Write register comes from
field reg_2 (bits 20-16)

the destination register number for Write register
comes from field reg_dest (bit 15-11)

RegWrite none the value at input Write data is stored into the
register selected with Write register

ALUSrc the second ALU operand comes
from the second output from the
register file

The second ALU operand comes from the 16
low order instruction bits

PCSrc PC is loaded with the ouput
from ADDER that computes
PC+4

PC is loaded with the output from the ADDER
that computes the jump destination

MemRead none The content of memory location addressed with
Address is put on Read data output

MemWrite none The value on Write data is stored in memory
location addressed with Address

MemtoReg The value on Write data input at
register file comes from ALU

The value on Write data input at register file
comes from data memory

A simple Control Unit

• The Control Unit is simply a combinational circuit,
actually a truth table, with inputs from the 6 bits of the
“op” field of each instruction, and 9 outputs, namely the
control signals in the MIPS datapath.

• A section of this truth table (for R-type MIPS instructions,
load, store and beq (branch if equal). Patterson-Hennessy,
fig. 5.22.

• In actual implementations, there are more input/output
combinations, for all other instructions in MIPS ISA.

37

A simple Control Unit

38

signal R-type load store beq
op5 0 1 1 0
op4 0 0 0 0
op3 0 0 1 0
op2 0 0 0 1
op1 0 1 1 0
op0 0 1 1 0
RegDst 1 0 X X
ALUsrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOp0 0 0 0 1

input

otput

A simple Control Unit
• The MIPS datapath and its Control unit. Note the AND

gate to choose the source for the next PC value (Patterson-
Hennessy, fig. 5.17)

39

A simple Control Unit
• As an instance, let us track the execution of an R-type

instruction.

1. The PC content is used to address the Instruction Memory,
which outputs the instruction to be executed.

2. The instruction op field is sent to the Control Unit, and
fields reg_1 and reg_2 are used to address the register file.

• Please note that at this stage, the datapath has no notion of
the instruction type (R-Type, or whatever), namely that
the required values come from reg_1 and reg_2 registers;
more on this subject later on …

40

A simple Control Unit
3. The CU produces nine control signals for an R-type

instruction, specifically ALUOp=10; these, once input to
ALUcontrol with the funct instruction field, set the actual
R-type operation to be carried out by the ALU

4. Meanwhile, the register file outputs the values of registers
reg_1 and reg_2, as signal ALUSrc=0 selects the second
input to the ALU from the second output of the register
file.

5. The ALU outputs the result from the computation, which
is forwarded to the register file (Write data) according to
signal MemtoReg

41

A simple Control Unit
• All these steps can be carried out within the same clock

cycle, provided the clock cycle is longer than the
cumulative signal delay through all functional units
involved.

• So far, datapath state elements involved in the execution
(PC, instruction memory, register file) have not changed
their state (they have stored no new value).

• They just behaved as combinational elements, delivering
as ouputs the values at their inputs, with no delay.

42

A simple Control Unit
6. At this point, the value available at register file input

Write data has to be stored into the register addressed with
the instruction field reg_dest, and the actual store happens
at the proper clock transition, according the flip-flop type.

• Note that control sugnal RegWrite is asserted, to enable
the write into the destination register of the register file.

• As an exercise, repeat the sequence just analysed for the
other instruction types (load, store, beq), checking each
control signal.

43

A simple Control Unit

• Here is the Control Unit
for the single cycle
architecture.
(empty dots negate
signals at AND gate
inputs)
Patterson-Hennessy, fig.
C.2.5.

44

A multicycle version of MIPS
• Single cycle datapaths can work correctly, but they are not

used in current implementations, because of their pour
efficiency.

• Different instructions take a different amount of time to be
executed, according to the required operations within the
datapath.

• The clock cycle must be chosen once for all, and its
duration must accommodate for the longest instruction;
this in turn causes a waste in all instructions that executue
in a shorter time.

45

A multicycle version of MIPS
• Which are the design criteria for a modern multicycle

processor?

• As a first step, the designer breaks instruction execution
down into a set of steps, each of them deemed executable
in a single clock cycle (Note: in the following, we will use
interchangeably the terms step, phase, stage)

• It is highly advisable that each step can be carried out in
roughly the same amount of time. Indeed, if a step is
longer than the others, the clock cycle must match the
longest !

46

A simple RISC architecture

• Each stage can host at most a single operation on each
functional unit.

• If the CPU hosts a single ALU, it cannot be used in the
same step both to increment the PC and to add two
registers

• Let us inspect the complete datapath of the multicycle
MIPS, just to comment its operation at each step of the
execution of the instructions already considered.

47

The MIPS architecture datapath
Hennessy-Patterson, Fig. A.17:

48

MIPS: Instruction Fetch
1. First step:

Instruction Fetch (IF):

a) IR ‹- memory[PC]:
uses PC to fetch from
instruction memory the
instruction to be executed, and
stores it in the Instruction
Register (IR).

b) PC ‹- PC + 4.

• As we know, a) and b) are
executed in parallel.

49

MIPS: Instruction Fetch
• Let us immediately highlight some features of the

architecture operation.

• The PC increment could be done by the ALU, that is not
used in this phase of the instruction execution.

• But when we will consider instructions pipelining, we will
note that the ALU is (hopefully) busy, with another
instruction.

• It is better to have a separate ADDER for the PC alone.

• Also, please note that the new PC (NPC) is also forwarded
towards the ALU (can you tell why ?)

50

MIPS: Instruction Fetch

• At the end of this phase, the
new PC and the instruction
are stored in two internal
registers (NPC e IR).

• These registers are not visible
at the ISA level (so, the
programmer cannot use
them), yet they are necessary
in the multicycle
implementation to store
mandatory data required in
the following phases

51

MIPS: Instruction Decode
2. Instruction decode/register fetch

(ID)

• At the begin of this phase, the
instruction type is still unknown;
however, it is possible to carry out
operations that cause no damage, if
the decoding shows a different
instruction.

52

MIPS: Instruction Decode

a) A ‹- reg[IR[25-21]]
B ‹- reg [IR[20-16]]

• reading of source registers. It is still unknown if the
registers will be actually used (R-type instruction) but
reading them causes no harm, and they could turn out
to be useful in later steps, so they are read from the
register file and stored in temporary registers A and B
(invisible at ISA level).

• The register file is read at every cycle, and temporary
registers A and B are overwritten at every cycle too.

53

MIPS: Instruction Decode
b) ALUout ‹- PC + IR[15-0]

• the hypothetical branch destination address is computed and
stored in the internal register ALUoutput, whence it will be
fetched in the next cycle if the instruction is indeed a branch
(Patterson-Hennessy, fig. 5.9).

54

Note (1): this picture shows an
ADDER for computing PC+IR[15].
This could be done through the ALU
(go back to the complete datapath
scheme)

Note (2): The true increment is :
ALUout ‹- PC +
+ (sign-extended (IR[15-0]) << 2

MIPS: Instruction Decode
• In an “aggressive” implementation, the test on the branch

could be carried out during the second clock cycle, thus
completing a branch instruction in two cycles.

55

• If the instructions have an
irregular structure, (as in IA-
32), it is not possible to
identify the bits for the
operands until the instruction is
decoded (Patterson-Hennessy,
fig. 2.45)

MIPS: EXecution
3. Execution (EX): The Control Unit

drives the ALU using the op-code in the
instruction register, and the ALU works
on the operands (available from the
previous cycle) by executing one of four
possible operations, according to the
instruction type:

a) I-type instruction, memory access (load
and store)

b) R-type instruction
(register-register)

c) conditional branch

d) unconditional branch (jump) 56

MIPS: EXecution

a) I-type instruction or memory access (load/store)

• ALUout ‹- A + IR[15-0]

• the ALU adds to tempoary register A the immediate value
(in a load/store, this is the RAM address to work on)

b) R-type instruction (register-register)

• ALUout ‹- A op B

• the ALU executes the specified operation on the contents
of temporary registers A and B

57

MIPS: EXecution
c) Conditional branch

• if (A == B) PC ‹- ALUoutput

• The ALU compares the two source registers, and signal
Zero, if asserted, has the content of ALUoutput stored in
the PC.

d) Unconditional branch (jump)

• PC ‹- jump address

• Note that in a taken branch, the PC is written twice: once
during the IF phase, then it is overwritten during EX

58

MIPS: MEMory access

4. Memory access (MEM/WriteReg):

a) load/store

• MDR ‹- memory[ALUoutput] (load)

• memory[ALUoutput] ‹- B (store)

b) arithmetic/logical instruction (I or
R-type)

• Reg[IR[15-11]] ‹- ALUoutput

59

MIPS: MEMory access

• In MIPS architecture datapath, it looks like there are two
memories, one for the instructions, accessed during
“Instruction Fetch”, another for the data, accessed during
“MEMory access”.

• They could also be realized as a single memory, since the
two memories are accessed in different phases of
instruction execution (that is, in different clock cycles).

• This is the well known principle of operation of modern
computers: the RAM stores both data and instructions.

60

MIPS: MEMory access

• However, when considering instruction pipelining, it will
be clear that both memories are accessed in the same
clock cycle, because of the two instructions that are both
executing, though in different phases: were they not
distinct, the concurrent access would be impossible.

• Indeed, in MIPS datapath, as well as in any other modern
CPU, the Instruction Memory and the Data Memory are
two distinct memories.

61

MIPS: MEMory access

• When we discuss caches, we’ll see that these memories
are actually first-level caches; the first level cache is split
into I-cache (instruction cache) and D-cache (data cache),
with separate addrressing and data lines.

• This double memory, located within the CPU, works at
the same speed as the CPU; so it does not delay
instructions execution.

• Things get worse when the addressed data or instruction
are not found within the cache...

62

MIPS: Write Back

5. Write back Register (WB/REG):

• Reg[IR[20-16]] ‹- MDR

• The load operation is completed by moving the MDR
content into the destination register specified in the
instruction.

• During this phase, the Cu asserts RegWrite (WE) signal
of register file, to allow writing of bits IR[20-16]

63

MIPS architecture datapath
Hennessy-Patterson, Fig. A.17:

64

MDR

MIPS instructions execution
• In this implementation, a branch takes 3 clock cycles, an

arithmetic/logical I-type, R-type or store takes 4, and a
load takes 5.

• Assuming (reasonable values, obtained by statistics on
various RISC architectures), that the frequency of a
branch is 12%, of a load 10%, the average number of
clock cycles to execute an instruction (CPI) is 3,98 (check
this !).

• Is there any gain with respect to a standard single cycle
architecture?

65

The multicycle Control Unit

• How does the CU change in a multicycle version of
MIPS ?

• For sure, it is more complex, because it has to specify
which signals have to be asserted in each step, and which
is the next step itself.

• Each step is described by a truth table whose inputs are:

– the type of instruction being executed (the “op” field !)

– the current step in the sequence describing the instruction
execution

66

The multicycle Control Unit

• The output of the truth table at each step consists of:

– the set of signals to be asserted

– the next step in the sequence

• This is just an informal description of a Moore machine:
a type of finite state automaton:

– each state has an output (in this case, the signals to be
asserted)that only depends on that state

– the transition to the next state only depends on the current state
and on the input (as in any finite state automaton)

67

The multicycle Control Unit
• Here is the finite state machine

describing the multicycle MIPS
CU.

• The states match the steps
described previously.

• As an instance, to execute a R-
type instruction, it is neccessary
to go through 4 states (0, 1, 6,
7); then back to the initial state
(Patterson-Hennessy, fig. 5.38).

68

The multicycle Control Unit
• A finite state CU can be easily

realized by combining a block of
combinational logic with a register,
that stores the current state of the
machine.

• The next state depends only on the
current one. (Patterson-Hennessy, fig.
C.3.2).

• Question: why is the state register a
4-bit register? (go back to the
previous slide).

69

Finite state machines and
microprograms

• What is the difference between a datapath controlled by a
finite state machine and another controlled by a
microprogram? none, really.

• Microprogramming applies a symbolic representation of
control based on instructions, to describe CU operation:
microinstructions executed on a simple microprocessor.

• (Exercise: review Tnembaum’s description of the
Instruction Fetch Unit. What is being used?...)

70

• a microprogram is nothing more than a textual
representation of a Moore finite state machine, with each
microinstruction corrisponding to a state in the machine
(so, what matches the “state register”?).

• So, why having a double representation (finite state
automaton, and microprogram) for the CU operation ?

• It is “only” a matter of complexity of the CU, which
actually depends on the number and richness of the ISA
instructions.

71

Finite state machines and
microprograms

• A real RISC architecture features many more instructions
than we considered so far, and some take various clock
cycles to be executed.

• The control in these architectures is definitely much more
complex than the example we discussed, and consequently
the associated automaton will be more complex too.

• Hardware description languages (“verilog”, “vhdl”) are
used to described the control operations and to synthetise
the CU as a finite state automaton.

72

Finite state machines and
microprograms

• But, beyond a certain complexity, the automaton
representation is no longer a viable means.

• As we will see, (possibly we already know this...), CISC
architectures (what is a CISC architecture?...) usually
feature hundreds of instructions, some of them really
complex, since they combine arithmetic/logic operations
with memory access.

• The number of steps to execute these instructions is very
high, resulting in a finite state automaton with thousands
of states and hundred of state sequences for many
instructions

73

Finite state machines and
microprograms

Finite state machines and
microprograms

• Describing such a complex automaton, verifying its
correctness, indentifing possible improvements to the
datapath to optimize instructions execution, is an almost
impossible task.

• Describing the control function with a microprogram
simplifies the design and the analysis of the processor
datapath, especially when this requires a very complex
control.

74

Finite state machines and
microprograms

• Microprogramming was the natural choice for
architectures in the 60s and 70s; the trend was designing
ISA with a very rich set of very complex and “powerful”
instructions.

• This trend had solid practical reasons, to be analysed in
the sequel.

75

Complex Instruction Set Computer

• The idea of describing the datapath control function through
a microprogram dates back to 1953, when M. Wilkes
proposed to use microcode for describing the execution of
instructions.

• The basic idea was to introduce a further layer between the
ISA level and instruction execution, decomposing
instructions into finer steps, the microinstructions.

• At that time, the notion of finite state automaton was not yet
formalized, it was defined later in the second half of the 50s.

76

Complex Instruction Set Computer
• This approach to control unit design lasted all th 60s and

70s long, and was well justified and matched to the
technology available in those years.

• Computer Aided Design simply did not exist, so that
describing and designing a CU with a complex finite state
automaton was much more involved than using a
microgrogramming approach.

• And in those years, the trend was designing architectures
with a very rich and complex instruction set.

77

Complex Instruction Set Computer

• Very complex machine instructions were, at that time, a
reasonable choice, with the technology available:

1. RAM access time was much longer than ROM access
time, where the microprogram was stored, with ROM
physically embedded in the CPU or located very close to
it.

2. There existed no CPU with caches, the latter being
introduced only at the beginning of the 80s.

78

Complex Instruction Set Computer
• It was quite reasonable that every access to the RAM to

get the next instruction would bring to the CPU an
instruction capable of deploying a “lot of work”.

• As an instance, IBM 370 sported an extremely powerful
machine instruction:

– MVC X Y L
move a string of length L from address X to address Y

• Once brought to the CPU, the instruction could be
executed by decomposing it into small steps
(microinstructions)

79

Complex Instruction Set Computer

3. Compiler technology was still in its early phase; powerfull
machine instructions made the task of the compiler much
easier. The “semantics” of the instruction hided the
complexity of the compilation phase !

4. RAM was expensive and limited, so powerfull
instructions allowed to produces short executables.

80

Complex Instruction Set Computer

• Lastly, microprogramming in control made it simple to
enlarging the ISA of CPU with new instructions:

• Simply, one could change the microprogram by adding new
instructions in the microcode ROM.

• ROM had its own chip (it was not part of the CPU chip set),
so it was reasonably easy to enlarge the ISA by changing
the chip of the ROM only, no the whole CPU.

81

Complex Instruction Set Computer
• This flexibility in adding instructions motivated a many new

proposal by CPU designers, since ROM capacity was farily
large.

• More and more instructions were deviced, for new
functions.

• The most blatant example is the 80x86 family, that has seen
an enormous increase of its ISA in the years (and decades !).

• But this approach has its own drawbacks...

82

Complex Instruction Set Computer
• In the early 80s, processors such as VAX from DEC or IBM

mainframes had over 300 different instructions and up to
200 modes for specifying operands (including type and
addressing mode). A very versatile and complex ISA
resulted in:
– a large number of bits in instruction formats, to specify the type of

operation, the number, type and position of the operands;

– variable length instruction formats, because it was impossible to
allocate a predefined, fixed number of bits for all instructions,
which would waste a lot of space in most formats (in 80x86 ISA
instruction length varies from 1 to 17 bytes).

83

Complex Instruction Set Computer

• Complex and irregular (in their format) instructions require
more time for decoding and for starting the actual execution
(EX phase in MIPS).

• To begin with, operands cannot be retrieved (from the
register file, as an instance) until the instruction type is
known, because the addressing bits in the instruction vary in
position according to instruction type.

• Complex instructions require a more advanced CU, made up
with more logic gates, so that outputs from the CU to the
datpath control points take longer to stabilize, once input are
stable.

84

Complex Instruction Set Computer

• CISC ISA hides an even bigger problem: a versatile
instruction format resulted in operands coming not only
from registers::

ADD R1, R2, R3 // R1 R2 + R3

• but also from registers AND memory locations:

(an exam from VAX instruction):

ADDL3 42 (R1), 56 (R2), 0 (R3)

(fetch a word from address 56 + [R2], a word from address 0 + [R3],
add the two values and store the result at address 42 + [R1])

85

Complex Instruction Set Computer

• Indeed, instructions using explicitly memory locations
yielded in a very compact code

– as an instance, it is not necessary to produce code to bring
operands to CPU registers, with was accompliced through the
microcode

• However, strong bottlenecks would arise easily in main
memory access (itself much slower than the CPU)

– potentially, each CISC instruction could use one o more operands
to be fetched from main memory.

86

An example: Pentium 4 ISA:
• This ISA is the outcome of the evolution of the 80c86 architecture

80x86 across multiple versions, with backward compatibility as a
must.

• It is complex and irregular, with up to 6 fields, each of them variable
in length; 5 of the 6 are optional.

• One of the operands (not both ! at least) in (almost) every instruction
can be in memory (Tanenbaum, Fig. 5-14)

87

Pentium 4 ISA

• A small section of the
most common integer
instructions in Pentium
4 (Tanenbaum, Fig. 5-
34)

88

Reduced Instruction Set Computer
• With CISC processor production still flourishing, at the

begin of 80s new machines are being designed according to
a completely new design and conception.

• In1980, in Berkeley, D. Patterson and C. Sequin design a
CPU whose Cu is not described by a microprogram, and
cast the name RISC (actually, CISC as well, as a
counterpart to RISC)

• Their project will result in the SPARC (Scalable Processor
ARChitecture) systems by SUN.

89

Reduced Instruction Set Computer

• Almost at the same time, in 1981, in Stanford, J. Hennessy
designs a similar architecture, capable of effectively
deploying pipelining, and calls it MIPS: Microprocessor
without Interlocked Pipeline Stages (with a nice word trick
in the acronym …) later used in various commercial
processors.

• To a large measure, it is the MIPS we are considering.

• Both architectures build on CRAY and on IBM 801 (a
research prototype) from the 60s and 70s.

90

Reduced Instruction Set Computer
• In mid 70s, a few researchers (among which J. Cocke from

IBM) had shown that programmers (and compilers) used
only a small fraction of the addressing modes available in
CISC ISA of that period.

• A. Tanenbaum had shown through statistics the almost all
instructions used small, immediate values, that could be
represented with 13 bits, while instructions formats usually
allowed 16 o 32 bits to store the “immediate”. Most bits
went unused most of the times.

91

Reduced Instruction Set Computer
• Stated another way, most programs spend most of the time

executing simple instructions.

• It is therefore useless having a large set of long and complex
instructions (moreover, of variable length), that:

– took a lot of time to load from RAM (their length in bytes cused
multiple memory accesses)

– required a lot of work to be decoded.

92

Reduced Instruction Set Computer
• Which is the driving idea in RISC machines?

1. The CPU executes a limited number of simple instructions
that can be (ultimately) executed in a single clock cycle.

• Simple instructions demand a smaller datapath, a simple
CU, with short time to apply control (the time necessary
to produce datapath control signals once op and funct
fields are input to the CU).

• For these reasons, it is possible to used a short clock cycle
(decomposing the execution in more clock cycle is a
winning approach, nethertheless).

93

Reduced Instruction Set Computer

2. Instructions mainly access operands in registers (within
the CPU) and store the result in a register too.

3. Access to RAM is limited as much as possible (even if
caches are available), and is restricted only to special
instructions, LOAD and STORE.

94

An example: SPARC ISA
• All instructions take 32 bits.
• Typically, the operands are three registers
• With time, instruction format has developed with vaious SPARC

versions, but it has retained a fixed length and a fixed and regular
field decomposition (Tanenbaum, fig. 5-15)

95

UltraSPARC III ISA

• All integer instructions in UltraSPARC III. Note the unique
instructions that access main memory (Tanenbaum, Fig. 5-35)

96

Reduced Instruction Set Computer
• Specifically, the good design rules for a modern CPU are

the following:

• No sofisticated microcode
– A simple CU commutes in a shorter time, and can use a shorter

clock cycle (higher frequency).

– RISC instructions are simpler than CISC ones, and to produce the
result obtained with a single CISC instrutions, it can be necessary
to use 4 or 5 RISC ones. This is no longer a problem, with large
inexpensive RAM memory modules.

97

Reduced Instruction Set Computer

• Define instructions easily decoded

– To be executed, an instruction must be decoded, so that it is
possibile to know the operation to be carried out, the resources
required (which functional units, which are the operands, where
the result will be stored).

– Fixed length instructions, with few operands and few addressing
modes make decoding quicker.

98

Reduced Instruction Set Computer
• RAM memory must be addressed only through LOAD

and STORE instructions

– Since RAM is much slower than CPU in modern processors, (the
gap was smaller in the 60s and 70s, but no caches were available),
the least it is used, the better.

– As far as possible, all instructions must work on registers, using
RAM only when operands must be fetched from memory, o stored
back.

– Off course, using caches alleviates RAM slow access, but RAM
use must be kept to a minimum.

99

Reduced Instruction Set Computer
• Having a lot of general-purpose registers

– Since RAM is slow, having a lot of registers allows to keep
intermediate results within the CPU, without having to resort to
RAM.

– Indeed, when all registers are in use, the result of a computation
must be stored in RAM, with a waste in time.

– In all modern architectures, a special effort is placed on having as
large a number of general purpose registers as possible.

100

Reduced Instruction Set Computer
• Let us illustrate these concepts with an example using the VAX CISC

instruction just considered:

– ADDL3 42 (R1), 56 (R2), 0 (R3)

• in a RISC architecture, it corresponds to the following sequence:

– LD R4, 56 (R2)
– LD R5, 0 (R3)
– ADD R6, R4, R5
– SD R6, 42 (R1)

• So, a longer program section, with more registers, and RAM used
only with load and store instruction.

101

Reduced Instruction Set Computer

• Finally: exploiting pipelining as much as possible

– If the architecture is well designed, the execution of the instruction
can be naturally split into many separate phases.

– In principle, each phase of a given instruction can be executed in
parallel to a different phase of another instruction: this is
pipelining

102

Reduced Instruction Set Computer

• exploiting pipelining as much as possible
(Tanenbaum, Fig. 2-4 – adapted to MIPS)

103

Reduced Instruction Set Computer
• exploiting pipelining as much as possible

– If a pipeline is split into 5 phases, and a clock cycle (say, 2 ns) is
required to go from one phase to the other, an instruction is
executed in 10 nanoseconds. Processors MIPS = 100.

– But if pipelining is exploited at the maximum level, every 2 ns a
new instruction can be launched, and every 2 ns an instruction
completes execution, so the “virtual” MPIS of the processor raises
to 500.

– Actually, this is only the theoretical case, since there is a chance
that the pipeline gets “stalled” (we’ll cover this in detail later); also
a pipelined architecture is slightly more complex (and thus slower)
than a non pipelined one.

104

Reduced Instruction Set Computer

• exploiting pipelining as much as possible
– Pipelining is a technique that best suites RISC architectures (it is a

complex technique, yet). The processor name MIPS stands for
Microprocessor without Interlocked Pipelines Stages, just to
highlight an architecture with few dependencies within
instructions, so as to exploit as much as possible the parallelism
inherently embedded in the instruction (ILP).

– In the 80x86 family, pipelining has shown up only in 486, and two
pipelines have been used later in Pentium (with Pentium, II Intel
reverted to a single pipeline, but with a multiscalar architecture)

105

Reduced Instruction Set Computer
• What has been the follow up in the RISC vs CISC theme?

• In a paper published in1980, Clark and Strecker (the
designers of the VAX architecture) are very sceptical that a
RISC architecture can ever compete with CISC
architectures.

• In 1986 some companies (HP, IBM) start producing RISC
processors.

• In 1987 Sun Microsystems begins to produce a processor
with a SPARC architecture, based on the RISC design
originated from Patterson in Berkley.

106

Reduced Instruction Set Computer

• In 1990 IBM announces its first superscalar RISC architecture
(RS6000), based on the IBM 801 concept (never gone to production)

• In the late 80s, even VAX designers assess the strength of the RISC
architecture, by comparing the performances of the two most powerful
processors of that time:VAX 8700 and MIPS M2000.

• The MIPS machine was found to be roughly 3 times quicker than
VAX in various benchmarks.

• In early 90s, Digital cancels VAX production and starts producing
processors based on the Alpha architecture, very similar to MIPS.

107

Reduced Instruction Set Computer
• On the average, MIPS executes twice as many instructions as VAX,

but VAX CPI is 6 times larger than MIPS’ (Hennessy – Patterson,
Fig. 2.41)

108

CISC vs RISC

• After 25 years, who has won the CISC/RISC war?

• Obviously RISC, since all companies in the computer/CPU
market have switched to RISC based production.

• Moreover, in 2000, the embedded 32-bit CPU market
(deployed in smart and video cameras and in other
appliances) is 90% RISC

• A single CISC architecture has survived the war well, and
exceptionally well indeed ….

109

CISC vs RISC
• The Intel 80x86 family (from 8086 until Pentium 4) and the

subsequent multicore family still have a large share in the
desktop/laptop market. Why?
– The main reason is backward compatibility: modern Intel

processors still execute code designed for 8086, the first 16-bit
single chip microprocessor (1978). On another side, IBM chose
8086 (and later 80286) for its PC line of products.

– Billions of dollars have been spent to develop software for the
80x86 architecture, and backward compatibility guarantees that all
this software is still in use.

110

CISC vs RISC
• Furthermore, Intel designers have succeded in deploying

RISC design principles in their new processors.

• A single pipeline (a “natural” choice for RISC
architectures) was first introduced in 486. The “586” has a
double pipeline; Pentium II switches to a superscalar
structure, an idea that dates back by 40 years, at the time of
CDC 6600, a forerunner of RISC architettures.

• Actually, since 486 all Intel CPUs host a RISC “core” that
allows to execute sinple and frequently issued instructions
in very few clock cycles (more complex instructions are
interpreted according to the standard CISC microcode
mode). 111

CISC vs RISC
• Intel launched (with uncertain results) a full RISC project,

ITANIUM 2, a complete departure from the processor
series 80x86 / core duo / i7-i5-i3.

• It is a 64-bit RISC architecture, which we’ll cover in the
section on static ILP.

112

CISC vs RISC

• Currently, the distinction CISC – RISC has little
meaning.

• On one side, the “commonly adopted” design
principles are those of RISC architectures.

• On another side, modern architectures are much
more complex and sofisticated than those typical 30
years ago, and they actually “look like” old CISC
architectures, at a closer look!

113

RISC architectures genealogy tree

• Dotted lines show
families of embedded
processors, processors
drawn in bold are
research machines
never gone to
production.
(Patterson-Hennessy,
fig. D.17.2)

114

Measuring performance

115

• Typical performance metrics:
– Response time
– Throughput

• Speedup of X relative to Y
– Execution timeY / Execution timeX

• Execution time
– Wall clock time: includes all system overheads
– CPU time: only computation time

• Benchmarks
– Kernels (e.g. matrix multiply)
– Toy programs (e.g. sorting)
– Synthetic benchmarks (e.g. Dhrystone)
– Benchmark suites (e.g. SPEC06fp, TPC-C)

Quantative principles

116

• Improving performance:

– Taking advantage of parallelism
At system level: OS scheduling threads
At the processor level: many-core, GPUs
At the core level: pipelining
At digital design level: SIMD CPUs, associative caches

– Locality
Reuse of data and instructions accessed “recently”

– The Common case
Optimize resources by favoring the most frequent case

Measuring performance

Amdahl’s Law
•Focus on the common case

•Speedup that can be obtained using a specific enhancement

117

Speedup = Execution time without enhancement
Execution time with enhancement when possible

Measuring performance

Amdahl’s Law – example 1
•A processor has to be enhanced for Web processing: the enhanced version is
10 times faster in Web application. Assuming the old processor is idle 60% of
time for I/O operations, and carries out computations for a fraction 0.4 of time =
(40%), what is the overall speed up gained by using the enhancement ?

•Fractionenhanced=0.4; Speedupenhanced=10

118

Speedupoverall =
1

0.6+ 0.4
10

=
1
0.64

=1.56

Measuring performance

Amdahl’s Law – example 2
•Graphics processors use consistently FP operations; FP square root
(FPSQRT) takes 20% of execution time in a given relevant benchmark. Two
alternatives (that are supposed to cost the same in silicon):

•1) Better hardware for FPSQRT allows for 10 times speedup in this op.

•2) All FP operations are made 1.6 faster (FP are 50% of overall workload)

119

SpeedupFPSQRT =
1

(1− 0.2)+ 0.2
10

=
1
0.82

=1.22

SpeedupFP =
1

(1− 0.5)+ 0.5
1.6

=
1

0.8125
=1.23

Measuring performance

Amdahl’s Law in Parallel Programming
• The law assumes a fixed amount of work (“problem size fixed”)

• Ex: an image of size NxN pixels, the task FFT

• The enhancement is the use of more processors n; the uniprocessor case
n=1 is the baseline

• The speed up is limited by the amount p of work that can be actually done
in parallel

• If the assumption of fixed amout is relaxed, another law describes the
performace, the Gustavson’s Law (to be discussed later) 120

n
n + p (1-n)

Speed-up = p = 0; (all serial) Speed-up = 1
p = 1; (all parallel) Speed-up = n

A useful figure of merit:

• CPI = Clock cycles Per Instruction

• That is, the number of clock cycles to complete an
instruction.

• This quantity shows the speed at which a CPU is capable of
“completing” the instructions it is executing.

• In any ISA, different instructions require a different number
of clock cycles to be completed. In a generic CPU, how can
we compute its CPI, and which value can we expect for it?

• What would be the “ideal” CPI for a CPU?
121

A useful figure of merit

The processor performance equation
• CPU time = CPU_clock_cycles_for_a_program x Clock_cycle_time

• IC = instruction count (instruction pathlength)

• CPI = CPU_clock_cycles_for_a_program / IC (Clock cycles Per Instruction)

• CPU time= IC x CPI x Clock_cycle_time

IC Instruction set architecture and compiler technology

CPI organization and instruction set architecture

Clock_cycle_time hardware technology and organization
122

1.9 Quantitative Principles of Computer Design ! 49

cycles, or clock cycles. Computer designers refer to the time of a clock period by
its duration (e.g., 1 ns) or by its rate (e.g., 1 GHz). CPU time for a program can
then be expressed two ways:

or

CPU time =

In addition to the number of clock cycles needed to execute a program, we
can also count the number of instructions executed—the instruction path length
or instruction count (IC). If we know the number of clock cycles and the instruc-
tion count, we can calculate the average number of clock cycles per instruction
(CPI). Because it is easier to work with, and because we will deal with simple
processors in this chapter, we use CPI. Designers sometimes also use instructions
per clock (IPC), which is the inverse of CPI.

CPI is computed as

CPI =

This processor figure of merit provides insight into different styles of instruction
sets and implementations, and we will use it extensively in the next four chapters.

By transposing the instruction count in the above formula, clock cycles can
be defined as IC × CPI. This allows us to use CPI in the execution time formula:

Expanding the first formula into the units of measurement shows how the pieces
fit together:

 = = CPU time

As this formula demonstrates, processor performance is dependent upon three
characteristics: clock cycle (or rate), clock cycles per instruction, and instruction
count. Furthermore, CPU time is equally dependent on these three characteris-
tics; for example, a 10% improvement in any one of them leads to a 10%
improvement in CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation
from others because the basic technologies involved in changing each character-
istic are interdependent:

! Clock cycle time—Hardware technology and organization
! CPI—Organization and instruction set architecture
! Instruction count—Instruction set architecture and compiler technology

CPU time CPU clock cycles for a program Clock cycle time×=

CPU clock cycles for a program
Clock rate---

CPU clock cycles for a program
Instruction count---

CPU time Instruction count Cycles per instruction Clock cycle time××=

Instructions
Program---------------------------- Clock cycles

Instruction------------------------------× Seconds
Clock cycle----------------------------× Seconds

Program--------------------

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

A useful figure of merit

The processor performance equation
• If an architecture has different PCI for a set of i classes of instructions

(which is typical of CISC ISA)

123

50 ! Chapter One Fundamentals of Quantitative Design and Analysis

Luckily, many potential performance improvement techniques primarily improve
one component of processor performance with small or predictable impacts on
the other two.

Sometimes it is useful in designing the processor to calculate the number of
total processor clock cycles as

CPU clock cycles =

where ICi represents the number of times instruction i is executed in a program
and CPIi represents the average number of clocks per instruction for instruction i.
This form can be used to express CPU time as

and overall CPI as

The latter form of the CPI calculation uses each individual CPIi and the fraction
of occurrences of that instruction in a program (i.e., ICi ÷ Instruction count). CPIi
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other mem-
ory system inefficiencies.

Consider our performance example on page 47, here modified to use mea-
surements of the frequency of the instructions and of the instruction CPI values,
which, in practice, are obtained by simulation or by hardware instrumentation.

Example Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR = 2%
CPI of FPSQR = 20

Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or
to decrease the average CPI of all FP operations to 2.5. Compare these two
design alternatives using the processor performance equation.

ICi CPIi×
i 1=

n

�

CPU time ICi CPIi×
i 1=

n

�
� �
� �
� �
� �

Clock cycle time×=

CPI

ICi CPIi×
i 1=

n

�
Instruction count--

ICi
Instruction count-- CPIi×

i 1=

n

�= =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

50 ! Chapter One Fundamentals of Quantitative Design and Analysis

Luckily, many potential performance improvement techniques primarily improve
one component of processor performance with small or predictable impacts on
the other two.

Sometimes it is useful in designing the processor to calculate the number of
total processor clock cycles as

CPU clock cycles =

where ICi represents the number of times instruction i is executed in a program
and CPIi represents the average number of clocks per instruction for instruction i.
This form can be used to express CPU time as

and overall CPI as

The latter form of the CPI calculation uses each individual CPIi and the fraction
of occurrences of that instruction in a program (i.e., ICi ÷ Instruction count). CPIi
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other mem-
ory system inefficiencies.

Consider our performance example on page 47, here modified to use mea-
surements of the frequency of the instructions and of the instruction CPI values,
which, in practice, are obtained by simulation or by hardware instrumentation.

Example Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR = 2%
CPI of FPSQR = 20

Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or
to decrease the average CPI of all FP operations to 2.5. Compare these two
design alternatives using the processor performance equation.

ICi CPIi×
i 1=

n

�

CPU time ICi CPIi×
i 1=

n

�
� �
� �
� �
� �

Clock cycle time×=

CPI

ICi CPIi×
i 1=

n

�
Instruction count--

ICi
Instruction count-- CPIi×

i 1=

n

�= =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

50 ! Chapter One Fundamentals of Quantitative Design and Analysis

Luckily, many potential performance improvement techniques primarily improve
one component of processor performance with small or predictable impacts on
the other two.

Sometimes it is useful in designing the processor to calculate the number of
total processor clock cycles as

CPU clock cycles =

where ICi represents the number of times instruction i is executed in a program
and CPIi represents the average number of clocks per instruction for instruction i.
This form can be used to express CPU time as

and overall CPI as

The latter form of the CPI calculation uses each individual CPIi and the fraction
of occurrences of that instruction in a program (i.e., ICi ÷ Instruction count). CPIi
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other mem-
ory system inefficiencies.

Consider our performance example on page 47, here modified to use mea-
surements of the frequency of the instructions and of the instruction CPI values,
which, in practice, are obtained by simulation or by hardware instrumentation.

Example Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR = 2%
CPI of FPSQR = 20

Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or
to decrease the average CPI of all FP operations to 2.5. Compare these two
design alternatives using the processor performance equation.

ICi CPIi×
i 1=

n

�

CPU time ICi CPIi×
i 1=

n

�
� �
� �
� �
� �

Clock cycle time×=

CPI

ICi CPIi×
i 1=

n

�
Instruction count--

ICi
Instruction count-- CPIi×

i 1=

n

�= =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

A useful figure of merit

The processor performance equation
• Example: 4 classes (n=4)

ICi / IC

• i:1 Integer CPI=5 50%

• i:2 Float add/sub CPI=8 30%

• i:3 Float mult CPI=11 15%

• i:4 Fload div CPI=24 5%

124

50 ! Chapter One Fundamentals of Quantitative Design and Analysis

Luckily, many potential performance improvement techniques primarily improve
one component of processor performance with small or predictable impacts on
the other two.

Sometimes it is useful in designing the processor to calculate the number of
total processor clock cycles as

CPU clock cycles =

where ICi represents the number of times instruction i is executed in a program
and CPIi represents the average number of clocks per instruction for instruction i.
This form can be used to express CPU time as

and overall CPI as

The latter form of the CPI calculation uses each individual CPIi and the fraction
of occurrences of that instruction in a program (i.e., ICi ÷ Instruction count). CPIi
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other mem-
ory system inefficiencies.

Consider our performance example on page 47, here modified to use mea-
surements of the frequency of the instructions and of the instruction CPI values,
which, in practice, are obtained by simulation or by hardware instrumentation.

Example Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR = 2%
CPI of FPSQR = 20

Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or
to decrease the average CPI of all FP operations to 2.5. Compare these two
design alternatives using the processor performance equation.

ICi CPIi×
i 1=

n

�

CPU time ICi CPIi×
i 1=

n

�
� �
� �
� �
� �

Clock cycle time×=

CPI

ICi CPIi×
i 1=

n

�
Instruction count--

ICi
Instruction count-- CPIi×

i 1=

n

�= =

Computer Architecture: A Quantitative Approach
© 2012 Elsevier, Inc. All rights reserved.

= 5*0,5+8*0,3+11*0,15+24*0,05= 7,75

A useful figure of merit

CPI in pipelined CPUs
• L: number of pipeline stages

• IC: instruction count in the algorithm

• Ideal case: no pipeline stalls

• Real case: pipeline stalls

125

CPU time = L −1() + IC

CPIIDEAL=
L −1() + IC

IC
=1+ L −1

IC
≈1

CPIPIPELINE=CPIIDEAL + AverageClockCyclesLostInStalls

A useful figure of merit

Speedup in pipelined CPUs
• L: number of pipeline stages

• Assumption: same Clock_cycle_time

126

Speedup =
CPUtimenopipe

CPUtimepipe

=
 IC x CPInopipe x Clock_cycle_timenopipe

IC x CPIpipe x Clock_cycle_timepipe

Speedup =
CPInopipe

CPIpipe

=
 L

1+AverageClockLostStalls

