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A) A processor embeds four cores that have private L1 caches; two L2 caches are shared by each couple of cores; the single L3 cache is shared by the four cores. The caches obey the MESI protocol and have the following structure: 32KB, 2-way L1 I-cache and D-cache, each 16-byte block; 1 MB, 4-way associative, 32-byte block L2 cache; 8MB, 8-way associative, 128-byte block shared L3 cache. The latencies (disregarding virtual memory TLB) expressed in clock cycles are: 4 in L1, 8 in L2, 24 in L3. Addresses are 48-bit long.
a1) assuming initially empty and invalidated cache lines throughout the hierarchy, consider the following memory accesses

core 1) LD F1, 0000FFFFA000hex;

core 2) LD F1, 0000FFFFA010hex;
core 3) LD F1, 0000FFFFA010hex
core 4) ST F1, 0000FFFFA020 hex;

and show the cache blocks involved throughout the memory hierarchy and the sequence of miss/hit in the hierarchy (assume writes are managed with a write-back policy).
a2) show the status of each cache block according to the MESI protocol at each operation.
Assumptions: L2 caches are shared by cores 1-2, and 3-4; we arbitrary assume that MESI is applied both at L1/L2 and L2/L3 interfaces.

L1(I&D): NB=32KB/16B=2K; 2-way; index=log2(2K/2)=10 bits; block disp=4 bits; tag=48-10-4=34 bits
L2: NB=1MB/32B=2^15; 4-way; index=log2(2^15/4)=13 bits; block disp=5 bits; tag=48-13-5=30 bits
L3: NB=8MB/128B=2^16; 8-way; index=log2(2^16/8)=13 bits; block disp=7 bits; tag=48-13-7=28 bits
CORE 1) LD F1, 0000FFFFA000hex
miss L3, L2, L1
0000|0000|0000|0000|1111|1111|1111|1111|1010|0000|0000|0000
L3

0000000000000000111111111111|1111101000000|0000000 ; way 1;
L2(1-2)
000000000000000011111111111111|1110100000000|00000 ; way 1; block status E
L1(1)
0000000000000000111111111111111110|1000000000|0000 ; way 1; block status E
CORE 2) LD F1, 0000FFFFA010hex
miss L1, hit L2
0000|0000|0000|0000|1111|1111|1111|1111|1010|0000|0001|0000

L3

0000000000000000111111111111|1111101000000|0010000 ; way 1;
L2(1-2)
000000000000000011111111111111|1110100000000|10000 ; way 1; block status S
L1(2)
0000000000000000111111111111111110|1000000001|0000 ; way 1; block status E

CORE 3) LD F1, 0000FFFFA010hex
miss L1, miss L2, hit L3
0000|0000|0000|0000|1111|1111|1111|1111|1010|0000|0001|0000

L3

0000000000000000111111111111|1111101000000|0010000 ; way 1;

L2(3-4)
000000000000000011111111111111|1110100000000|10000 ; way 1; block status S

L1(3)
0000000000000000111111111111111110|1000000001|0000 ; way 1; block status S
L1(2)
0000000000000000111111111111111110|1000000001|0000 ; way 1; block status S

CORE 4) ST F1, 0000FFFFA020hex
miss L1, miss L2, hit L3

0000|0000|0000|0000|1111|1111|1111|1111|1010|0000|0010|0000

L3

0000000000000000111111111111|1111101000000|0100000 ; way 1; dirty
L2(3-4)
000000000000000011111111111111|1110100000001|00000 ; way 1; block status I
L1(4)
0000000000000000111111111111111110|1000000010|0000 ; way 1; block status M
due to write back, L2(3-4) is not updated

B) The processor runs at 2.6GHz, and the 64-bit external bus allows a maximum transfer rate of 12 GB/sec.
The external RAM is realized with DDR3-2133 chips and is logically organized with 4 banks, each capable of delivering a 16-bit word. Addressing the memory subsystems requires two bus cycles, and activating a memory row requires 3 bus clock cycles. Assuming burst transfer mode from DDRAM, estimate the cost of a miss.
Bus maximum transfer rate is 12GB/sec: bus width is 8 bytes, the maximum transfer rate allows for  12/8 Gtransfer/sec, that is a 12/8/2 GHz clock, 750MHz clock (with DDR mode, that is 2 trasfers per clock cycle). Since DDR3-2133 runs at maximum clock of 1066 MHz, the bus is the limiting factor.

The miss requires the transfer of a L3 cache block, that is 128 bytes.


Tmiss= Tind+Natt*Tatt+Nt*0,5 (T in bus clock cycles)


Tmiss=2+(128/(4*2))* 3+(128/8)*0,5=2+16*3+16*0,5=58 (bus clock cycles)
The number of processor clock cycles is 58 *  2.6 10^9 /750 10^6 =58*2.6/0,75=201,06; that is 202.
Total miss cost including all latencies is 4+8+24+202=238 processor clock cycles
C) Each core of the processor is organized as a superscalar, 2-way pipeline, that fetches, decodes issues and retires (commits) bundles containing each 2 instructions. The front-end in-order section (fetch and decode) consists of 2 stages. The issue logic takes 1 clock cycle, if the instructions in the bundle are independent, otherwise it takes 2 clock cycles. The architecture supports dynamic speculative execution, and control dependencies from branches are solved when the branch evaluates the condition, even if it is not at commit. The execution model obeys the attached state transition diagram. There is a functional units (FUs) Int1 for integer arithmetics (arithmetic and local instructions, branches and jumps, no multiplication, 2 FUS FAdd1-Fadd2 for floating point addition/subtraction, a FU FMolt1 for floating point multiplication, and a FU for division, FDiv1.

There are 12 integer (R0-R11) and 12 floating point (F0-F11) registers. Speculation is handled through a 8-entry ROB, a pool of 4 Reservation Stations (RS) Rs1-4 shared among all FUs, 1 load buffers Load1, 1 store buffer Store1 (see the attached execution model): an instruction bundle is first placed in the ROB (if two entries are available), then up to 2 instructions are dispatched to the shared RS (if available) when they are ready for execution and then executed in the proper FU. FUs are pipelined (not the Fdiv one) and have the latencies quoted in the following table:
	Int   - 2
	Fadd – 3

	Fmolt – 5
	Fdiv – 6


Further assumption
· The code is assumed to be already in the I-cache; data caches are described in point A) and are assumed empty and invalidated; the cost of a miss is that computed at point B.
c1) assuming a write-back protocol for cache management, show state transitions for the instructions of the first iteration of the following code fragment, that scans the 1024 floating elements, each 8-byte, of array X[] and replaces X[i] with X[i]+X[i+1] (R0 is always 0).
PC01 OR    R1,R0,00000FFFFA000hex -- set base address of X[0]
PC02 OR    R5,R0,1023dec          –- set loop terminating condition

PC03 OR    R3,R0,R0              -- initialize loop controlling variable
PC04 LD    F0,0(R1)              -- load X[i]
PC05 LD    F1,8(R1)              -- load X[i+1]
PC06 ADDF  F2,F1,F0              -- new value for X[i] 
PC07 ST    F2,0(R1)              -- written back
PC08 ADD   R3,R3,2               -- increase loop controlling variable
PC09 ADD   R1,R1,16              -- advance pointer into array X
PC10 BL    R5,R3,PC04            -- testing for loop exit condition
c2) show ROB, RS and buffer status at the issue of PC04 in the second iteration;
c3) determine the number of hits and misses in each cache level for the algorithm;

c4) estimate the CPI of the algorithm and the execution time;

c5) which is the speed-up that can be expected by halving the latency of L3?

Dynamic speculative execution 
Decoupled ROB RS execution model
	ISTRUCTION
	
	
	INSTRUCTION STATE 

	
	n.
ite
	ROB
pos
	WO
	RE
	DI
	EX
	WB
	RR
	CO

	PC01 OR    R1,R0,00000FFFFA000hex
	
	1
	
	1
	2
	3-4
	5
	6-7
	8

	PC02 OR    R5,R0,1023dec         
	
	2
	
	1
	2-3
	4-5
	6
	7
	8

	PC03 OR    R3,R0,R0             
	
	3
	
	2
	3-4
	5-6
	7
	8-246
	247

	PC04 LD    F0,0(R1)             
	
	4
	2-4
	5
	6
	7-244
	245
	246
	247

	PC05 LD    F1,8(R1)             
	
	5
	3-4
	5-245
	246
	247-250
	251
	252-257
	258

	PC06 ADDF  F2,F1,F0             
	
	6
	4-250
	251
	252
	253-255
	256
	257
	258

	PC07 ST    F2,0(R1)             
	
	7
	5-255
	256
	257
	258-261
	-
	262
	263

	PC08 ADD   R3,R3,2              
	
	8
	5-6
	7
	8
	9-10
	11
	12-262
	263

	PC09 ADD   R1,R1,16             
	
	1
	
	9
	10
	11-12
	13
	14-263
	264

	PC10 BL    R5,R3,PC04           
	
	2
	9-10
	11
	12
	13-14
	-
	15-263
	264

	
	
	
	
	
	
	
	
	
	


PC10 decides on the branch at clock 14, so PC04 (together with PC05) is fetched at 15, decoded at 16; at 17 it cannot be issue, because the ROB is full until 247 included, so PC04 is issued together with PC05 at 248 and placed in ROB positions 3 and 4.
clock 248
	
	Reservation station and load/store buffers

	
	Busy
	Op
	Vj
	Vk
	ROBj
	ROBk
	ROB pos
	Address

	Rs1
	no
	
	
	
	
	
	
	

	Rs2
	no
	
	
	
	
	
	
	

	Rs3
	no
	
	
	
	
	
	
	

	Rs4
	no
	
	
	
	
	
	
	

	Load1
	yes
	PC05
	
	
	
	
	5
	[8(R1)]

	
	
	
	
	
	
	
	
	

	Store1
	no
	PC07
	
	
	
	
	7
	[(R1)]

	
	
	
	
	
	
	
	
	


ROBj ROBk: sources not yet available
ROB pos: ROB entry number where instruction is located
	
	Result Register status

	Integer
	R0
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	
	

	ROB pos
	
	1
	
	8
	
	
	
	
	
	
	
	
	
	

	state
	
	B
	
	B
	
	
	
	
	
	
	
	
	
	

	Float.
	F0
	F1
	F2
	F3
	F4
	F5
	F6
	F7
	F8
	F9
	F10
	F11
	
	

	ROB pos
	3
	4
	6
	
	
	
	
	
	
	
	
	
	
	

	state
	B
	B
	B
	
	
	
	
	
	
	
	
	
	
	


	Reorder Buffer (ROB)

	 ROB Entry# 
	Busy
	Op
	Status
	Destination
	Value

	1
	yes
	PC09 ADD R1,R1,16             
	RR
	R1
	

	2
	yes
	PC10 BL R5,R3,PC04           
	RR
	
	

	3
	yes
	PC04 LD    F0,0(R1)             
	RE
	F0
	

	4(tail)
	yes
	PC05 LD    F1,8(R1)             
	RE
	F1
	

	5(head)
	yes
	PC05 LD    F1,8(R1)             
	EX
	-
	

	6
	yes
	PC06 ADDF  F2,F1,F0             
	WO
	F2
	

	7
	yes
	PC07 ST    F2,0(R1)             
	WO
	0(R1)
	

	8
	yes
	PC08 ADD   R3,R3,2              
	RR
	R3
	


-Determining the number of misses at each cache
1024 elements, two elements accessed per iteration, 512 iterations

L3 block is 128 bytes, 
PC04 LD    F0,0(R1) 
PC05 LD    F1,8(R1) 
PC06 ADDF  F2,F1,F0
PC07 ST    F2,0(R1) 




Decoupled execution model for bundled (paired) instructions
The state diagram depicts the model for a dynamically scheduled, speculative execution microarchitecture equipped with a Reorder Buffer (ROB) and a set of Reservation Stations (RS). The RSs are allocated during the ISSUE phase, denoted as RAT (Register Alias Allocation Table) in INTEL microarchitectures, as follows: a bundle (2 instructions) if fetched from the QUEUE of decoded instructions and ISSUED if there is a free couple of consecutive entries in the ROB ( head and tail of the ROB queue do not match); a maximum of two instruction are moved into the RS (if available) when all of their operands are available. Access memory instructions are allocated in the ROB and then moved to a load/store buffer (if available) when operands (address and data, if proper) are available .

States are labelled as follows:
WO:
Waiting for Operands (at least one of the operands is not available)

RE:
Ready for Execution (all operands are available)

DI:
Dispatched (posted to a free RS or load/store buffer)

EX:
Execution (moved to a load/store buffer or to a matching and free UF) 

WB:
Write Back (result is ready and is returned to the Rob by using in exclusive mode the Common Data Bus CDB)

RR:
Ready to Retire (result available or STORE has completed)

CO:
Commit (result is copied to the final ISA register)

State transitions happen at the following events:
 from QUEUE to WO:
ROB entry available, operand missing
from QUEUE to RE:
ROB entry available, all operands available
loop at WO:
waiting for operand(s)
from WO to RE:
all operands available
loop at RE:
waiting for a free RS or load/store buffer
from RE to DI:
RS or load/store buffer available
loop on DI:
waiting for a free UF
from DI to EX:
UF available
loop at EX:
multi-cycle execution in a UF, or waiting for CDB
from EX to WB:
result written to the ROB with exclusive use of CDB
from EX to RR:
STORE completed, branch evaluted
loop at RR:
instruction completed, not at the head of the ROB, or bundled with a not RR instruction
from RR to CO:
bundle of RR instructions at the head of the ROB, no exception raised
Resources
Register-to-Register instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive;

RS: state DI

UF: EX and WB

Load/Store instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive;

Load buffer: from state WO (or RE) up to WB
Store buffer: from state WO (or RE) up to EX (do not use WB)

Forwarding: a write on the CDB (WB) makes the operand available to the consumer in the same clock cycle. If the consumer is doing a state transition from QUEUE to WO or RE, that operand is made available; if the consumer is in WO, it goes to RE in the same clock cycle of WB for the producer.

Branches: they compute Next-PC and the branch condition in EX and optionally forward Next-PC to the “in-order” section of the pipeline (Fetch states) in the next clock cycle. They do not enter WB and go to RR instead.
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