
Advanced Computer Architecture
July 2014

A) A processor embeds two cores that have private L1 and L2 caches, and a shared L3 cache. The
caches obey the MESI protocol and have the following structure: 16KB, 2-way L1 I-cache, 16 KB 4-way
L1 D-cache, each 16-byte block; 512 KB, 4-way associative, 64-byte block L2 cache; 8MB, 8-way
associative, 128-byte block shared L3 cache. The latencies (disregarding virtual memory TLB)
expressed in clock cycles are: 4 in L1, 10 in L2, 25 in L3. Addresses are 48-bit long.

a1) discuss the best write policy for the cache subsystem, by taking into account the MESI
protocol;
a2) compute the actual dimensions of the caches (in bits).
a3) assuming initially empty and invalidated cache lines throughout the hierarchy, show a sequence
of memory access instructions that cause a L1 data cache block to be invalidated.

B) The processor runs at 2GHz, and the external bus allows a burst transfer rate of 12GB/sec.
The external RAM is realized with DDR3-1600 chips and is logically organized with 8 banks, each
capable of delivering a 32-bit word. Addressing the memory subsystems requires two bus cycles, and
activating a memory row requires 3 bus clock cycles. Assuming burst transfer mode, estimate the
cost of a miss.

C) Each core of the processor is organized as a superscalar, 3-way pipeline, that fetches, decodes
issues and retires (commits) bundles containing each 3 instructions. The front-end in-order section
(fetch and decode) consists of 2 stages. The issue logic takes 1 clock cycle, if the instructions
in the bundle are independent, otherwise it takes 2 clock cycles. The architecture supports dynamic
speculative execution, and control dependencies from branches are solved when the branch evaluates
the condition, even if it is not at commit. The execution model obeys the attached state transition
diagram.
There are 2 functional units (FUs) Int1-INT2 for integer arithmetics (arithmetic and local
instructions, branches and jumps, no multiplication), 2 FUS FAdd1-Fadd2 for floating point
addition/subtraction, a FU FMolt1 for floating point multiplication, and a FU for division, FDiv1.
There are 12 integer (R0-R11) and 12 floating point (F0-F11) registers.
Speculation is handled through a 10-entry ROB, a pool of 4 Reservation Stations (RS) Rs1-4 shared
among all FUs, 1 load buffers Load1, 1 store buffers Store1 (see the attached execution model): an
instruction bundle is first placed in the ROB (if three entries are available), then up to 2
instructions are dispatched to the shared RS (if available) when they are ready for execution and
then executed in the proper FU. FUs are pipelined (not the Fdiv one) and have the latencies quoted
in the following table:

Int - 2 Fadd – 3
Fmolt – 5 Fdiv – 6

Further assumption
• The code is assumed to be already in the I-cache; data caches are described in point A) and are

assumed empty and invalidated; the cost of a miss is that computed at point B.

c1) under the write protocol chosen at point a1) for cache management, show state transitions for
the instructions of the first iteration of the following code fragment, that initialises the 1024
integer elements, each 4-byte, of vector X[], highlighting conflicts, if any:

PC01 MOVI R1, 0000000ABFB4hex – set base address of X[0]
PC02 MOVI R5, 1023 – set loop terminating condition
PC03 MOVI R2, 0 -- initialize loop controlling variable
PC04 ST R0,0(R1) -- R0 is a fixed-value, 0-content integer register
PC05 LD R3,0(R1) -- load zeroed-X[i]
PC06 ADD R4,R3,R2 -- i
PC07 ST R4,0(R1) -- store i into X[i]
PC08 ADD R2,R2,1 -- increase loop controlling variable
PC09 ADD R1,R1,4 -- advance pointer into array by 1
PC10 BL R5,R2,PC04 -- testing for loop exit condition

c2) show ROB, RS and buffer status at the issue of the BL instruction;

D) Show a c-like version of the assembly code fragment and answer the following questions:
d1) does the code allow for unrolling ? give a detailed explanation;
d2) imagine to modify the code for parallel execution (e.g. with openMP); which part of the code
can be actually parallelized? what is the maximum speed-up can that be obtained in the processor ?
d3) considering again the assembly version of the code, is it possible to apply software
pipelining? if yes, show the modified loop.

E) Estimate the CPI of the algorithm.

Dynamic speculative execution

Decoupled ROB RS execution model

ISTRUCTION INSTRUCTION STATE

 n.

ite

ROB

pos
WO RE DI EX WB RR CO

PC01 MOVI R1, 0000000ABFB4hex

PC02 MOVI R5, 1023

PC03 MOVI R2, 0

PC04 ST R0,0(R1)

PC05 LD R3,0(R1)

PC06 ADD R4,R3,R2

PC07 ST R4,0(R1)

PC08 ADD R2,R2,1

PC09 ADD R1,R1,4

PC10 BL R5,R2,PC04

Reservation station and load/store buffers

Busy Op Vj Vk ROBj ROBk
ROB

pos
Address

Rs1

Rs2

Rs3

Rs4

Load1

Store1

ROBj ROBk: sources not yet available
ROB pos: ROB entry number where instruction is located

 Result Register status

Integer R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

ROB pos

state

Float. F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

ROB pos

state

Reorder Buffer (ROB)

 ROB Entry# Busy Op Status Destination Value

1

2

3

4

5

6

7

8

9

10

Decoupled execution model for bundled (paired) instructions

The state diagram depicts the model for a dynamically scheduled, speculative execution microarchitecture equipped with a Reorder Buffer (ROB) and a set of

Reservation Stations (RS). The RSs are allocated during the ISSUE phase, denoted as RAT (Register Alias Allocation Table) in INTEL microarchitectures, as follows:

a bundle (3 instructions) if fetched from the QUEUE of decoded instructions and ISSUED if there is a free triplet of consecutive entries in the ROB (head and tail of

the ROB queue do not match); a maximum of two instruction are moved into the RS (if available) when all of their operands are available. Access memory instructions

are allocated in the ROB and then moved to a load/store buffer (if available) when operands (address and data, if proper) are available .

States are labelled as follows:

WO: Waiting for Operands (at least one of the operands is not available)

RE: Ready for Execution (all operands are available)

DI: Dispatched (posted to a free RS or load/store buffer)

EX: Execution (moved to a load/store buffer or to a matching and free UF)

WB: Write Back (result is ready and is returned to the Rob by using in exclusive mode the Common Data Bus CDB)

RR: Ready to Retire (result available or STORE has completed)

CO: Commit (result is copied to the final ISA register)

State transitions happen at the following events:

 from QUEUE to WO: ROB entry available, operand missing

from QUEUE to RE: ROB entry available, all operands available

loop at WO: waiting for operand(s)

from WO to RE: all operands available

loop at RE: waiting for a free RS or load/store buffer

from RE to DI: RS or load/store buffer available

loop on DI: waiting for a free UF

from DI to EX: UF available

loop at EX: multi-cycle execution in a UF, or waiting for CDB

from EX to WB: result written to the ROB with exclusive use of CDB

from EX to RR: STORE completed, branch evaluted

loop at RR: instruction completed, not at the head of the ROB, or bundled with a not RR instruction

from RR to CO: bundle of RR instructions at the head of the ROB, no exception raised

Resources

Register-to-Register instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive;

RS: state DI

UF: EX and WB

Load/Store instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive;

Load buffer: from state WO (or RE) up to WB

Store buffer: from state WO (or RE) up to EX (do not use WB)

Forwarding: a write on the CDB (WB) makes the operand available to the consumer in the same clock cycle. If the consumer is doing a state transition from QUEUE

to WO or RE, that operand is made available; if the consumer is in WO, it goes to RE in the same clock cycle of WB for the producer.

Branches: they compute Next-PC and the branch condition in EX and optionally forward Next-PC to the “in-order” section of the pipeline (Fetch states) in the next

clock cycle. They do not enter WB and go to RR instead.

wo RE EX WB RR CO
QUEUE

DI

