
fill-in

A) A processor embeds two cores that have private L1 and L2 caches, L3 is
shared. The caches obey the MESI protocol and have the structure in the
table: Addresses are 48-bit long. Write operations are managed with a
write-back policy.

cache dim. KB block B assoc. latency clock disp index tag
L1 128 32 2 4
L2 2024 64 4 8
L3 8192 64 8 16

Assuming initially empty and invalidated cache lines throughout the
hierarchy, consider the following program segment consisting of 3
instructions S1-S3:

S1 ADDI R1,R0,0000AAAAACC0hex
S2 LD F1,-8(R1)
S3 ST F1,8(R1)

A1) Please draw the breakdown of the addresses involved in each instruction
tag index disp

S1 L1
 L2
 L3

tag index disp
S2 L1
 L2
 L3

tag index disp
S3 L1
 L2
 L3

A2) These instructions are executed in Core 1 and Core 2 with the following sequence
Fill in the bable specifying the MESI state of the blocks involved in all caches
and any action taken by the cache controllers Sequence Status of cache block in cache L of core C Action taken by the cache controller

L1 C1 L2 C1 L1 C2 L2 C2 L3
Core 1 S1
Core 1 S3
Core 2 S1
Core 2 S2
Core 2 S3
Core 1 S2

Consider the statically scheduled pipeline drawn here aside: the
pipeline has proper forwarding units that feed intermediate results to
the ID/ stage; branch instructions take a decision in stage ME2. IF1 IF2 ID EX1 ME1 ME2 WB

A1 A2
M1 M2 M3

Integer
Float add/sub
Float mult

Producer
B1 - prepare a producer/consumer table, properly choosing instruction
classes

C
on

su
m

er

Prepare an optimized POE of code
fragment below for the static pipeline
of point B1

un-optimized optimized
ADDI R1,R0,0000AAAAACC0hex

loop LD F3,0(R1)

ADDF F2,F1,F1

LD F4,-8(R1)

MULTF F4,F3,F2

ADDF F5,F4,F2

ST F5,8(R1)

ADDI R1,R1,16

BLI R1,0000AAAAF000hex,loop

B3a) Show the ROE of the
optimised POE (extend as
necessary) the table Clock cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B3b) Compute the CPI of the
execution (showing proper values
and formulas)

A) A processor embeds two cores that have private L1 and L2
caches, L3 is shared. The caches obey the MESI protocol and
have the structure in the table: Addresses are 48-bit long. Write
operations are managed with a write-back policy.

cache dim. KB block B assoc. latency clock disp index tag
L1 128 32 2 4
L2 2024 64 4 8
L3 8096 64 8 16

B4) Compute the number of D-cache hit and miss for the
execution of the un-optimised loop, assuming the loop is
executed on a single core on the cache hierarchy of exercise A)
repeated above

ADDI R1,R0,0000AAAAACC0hex

loop LD F3,0(R1)

ADDF F2,F1,F1

LD F4,-8(R1)

MULTF F4,F3,F2

ADDF F5,F4,F2

ST F5,8(R1)

ADDI R1,R1,16

BLI R1,0000AAAAF000hex,loop

C) Each core of the processor described in A) is organized as a superscalar, 2-way
pipeline, that fetches, decodes issues and retires (commits) bundles containing each
2 instructions. The front-end in-order section (fetch and decode) consists of 3 stages
for fetch and 2 stage for decode. The issue logic takes 1 clock cycle, if the
instructions in the bundle are independent, otherwise it takes 2 clock cycles. The
architecture supports dynamic speculative execution, and control dependencies from
branches are solved when the branch evaluates the condition, even if it is not at
commit. The execution model obeys the attached state transition diagram. There is a
functional unit (FUs) Int1 for integer arithmetics (arithmetic and local instructions,
branches and jumps, no multiplication), 1 FUs FAdd1 for floating point
addition/subtraction, 1 FU FMolt1 for floating point multiplication, and a FU for
division, FDiv1.

There are 8 integer (R0-R11) and 8 floating point (F0-F11) registers. Speculation is
handled through a 8-entry ROB, a pool of 4 Reservation Stations (RS) Rs1-4 shared
among all FUs, 1 load buffer Load1, 1 store buffer Store1 (see the attached
execution model): an instruction bundle is first placed in the ROB (if two entries are
available), then up to 2 instructions are dispatched to the shared RS (if available)
when they are ready for execution and then executed in the proper FU. FUs are
pipelined (except for the float division unit, which is blocking) and have the latencies
quoted in the following table:

Int - 1 Fadd – 2

Fmolt – 2 Fdiv – 8

The processor embeds two cores that have private L1 and L2 caches, L3 is shared.
The caches obey the MESI protocol and have the structure in the table: Addresses
are 48-bit long. Write operations are managed with a write-back policy.

cache dim. KB block B assoc. latency clock
L1 128 32 2 4
L2 2024 64 4 8
L3 8096 64 8 16

The miss cost is 30 clock cycles

Show a schedule up to the issue of PC03 in
the second iteration (extend as necessary
the rows in the table)

PC ISTRUCTION INSTRUCTION STATE
n.

 ite
ROB
 pos WO RE DI EX WB RR CO

PC01 ADDI R1,R0,0000AAAAACC0hex

PC02 LD F3,0(R1)

PC03 ADDF F2,F1,F1

PC04 LD F4,-8(R1)

PC05 MULTF F4,F3,F2

PC06 ADDF F5,F4,F2

PC07 ST F5,8(R1)

PC08 ADDI R1,R1,16

PC09 BLI R1,0000AAAAF000hex,PC02

C2) Show the status at the time of issue of PC03 in the second iteration Time of issue:

Reservation station and load/store buffers
Busy Op Vj Vk ROBj ROBk ROB pos Address ROBj ROBk: sources not yet available

Rs1 ROB pos: ROB entry number where instruction is located
Rs2
Rs3
Rs4

Load1
Store1

Result Register status
Integer R0 R1 R2 R3 R4 R5 R6 R7
ROB pos
state
Float. F0 F1 F2 F3 F4 F5 F6 F7
ROB pos
state

Reorder Buffer (ROB)
ROB Entry# Busy Op Destination Status Value

0
1
2
3
4
5
6
7

 4/6

Decoupled execution model for bundled (paired) instructions
The state diagram depicts the model for a dynamically scheduled, speculative execution microarchitecture equipped with a Reorder Buffer (ROB) and a set of Reservation

Stations (RS). The ROB and RSs are allocated during the ISSUE phase, denoted as RAT (Register Alias Allocation Table) in INTEL microarchitectures, as follows: a

bundle (2 instructions) if fetched from the QUEUE of decoded instructions and ISSUED if there is a pair of consecutive entries in the ROB (head and tail of the ROB

queue do not match); a maximum of two instructions are moved into the RS (if available) when all of their operands are available. Access memory instructions are

allocated in the ROB and then moved to a load/store buffer (if available) when operands (address and data, if proper) are available .

States are labelled as follows:

WO: Waiting for Operands (at least one of the operands is not available)

RE: Ready for Execution (all operands are available)

DI: Dispatched (posted to a free RS or load/store buffer)

EX: Execution (moved to a load/store buffer or to a matching and free UF)

WB: Write Back (result is ready and is returned to the Rob by using in exclusive mode the Common Data Bus CDB)

RR: Ready to Retire (result available or STORE has completed)

CO: Commit (result is copied to the final ISA register)

State transitions happen at the following events:

 from QUEUE to WO: ROB entry available, operand missing

from QUEUE to RE: ROB entry available, all operands available

loop at WO: waiting for operand(s)

from WO to RE: all operands available

loop at RE: waiting for a free RS or load/store buffer

from RE to DI: RS or load/store buffer available

loop on DI: waiting for a free UF

from DI to EX: UF available

loop at EX: multi-cycle execution in a UF, or waiting for CDB

from EX to WB: result written to the ROB with exclusive use of CDB

from EX to RR: STORE completed, branch evaluted

loop at RR: instruction completed, not at the head of the ROB, or bundled with a not RR instruction

from RR to CO: bundle of RR instructions at the head of the ROB, no exception raised

Resources

Register-to-Register instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive;

RS: state DI

UF: EX and WB

Load/Store instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive;

Load buffer: from state WO (or RE) up to WB

Store buffer: from state WO (or RE) up to EX (do not use WB)

Forwarding: a write on the CDB (WB) makes the operand available to the consumer in the same clock cycle. If the consumer is doing a state transition from QUEUE to

WO or RE, that operand is made available; if the consumer is in WO, it goes to RE in the same clock cycle of WB for the producer.

Branches: they compute Next-PC and the branch condition in EX and optionally forward Next-PC to the “in-order” section of the pipeline (Fetch states) in the next clock

cycle. They do not enter WB and go to RR instead.

wo RE EX WB RR CO QUEUE DI

