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A) A processor embeds two cores that have private L1 and L2 caches, L3 is shared. The caches obey the MESI protocol and have the following structure: 32KB, 4-way L1 I-cache and D-cache, each 32-byte block; 1024KB, 8-way associative, 64-byte block L2 cache; 4MB, 8-way associative, 64-byte block L3 cache. The latencies (disregarding virtual memory TLB) expressed in clock cycles are: 2 in L1, 6 in L2, 12 in L3. Addresses are 48-bit long. Write operations are managed with a write-back policy. Assuming initially empty and invalidated cache lines throughout the hierarchy, consider the following memory accesses:
core 1) ST F1, 0000FFFFA000hex; (8-byte store)
core 1) LD F2, 0000FFFFA0A0hex; (8-byte load)
core 2) ST F1, 0000FFFFA000hex; (8-byte store)
core 2) ST F3, 0000FFFFA0A0hex; (8-byte store)

a1) show the blocks involved in each cache, and the associated MESI state after each instruction.

L1: disp 5; index 8; tag 35
L2: disp 6; index 11; tag 31
L3: disp 6; index 13; tag 29

core 1) ST F1, 0000FFFFA000hex; (8-byte store)
                                                           core1 core2  
L1 000000000000000011111111111111111010000000000000  miss    M    -
L2 000000000000000011111111111111111010000000000000  miss    I    -
L3 000000000000000011111111111111111010000000000000  miss       I

core 1) LD F2, 0000FFFFA0A0hex; (8-byte load)

                                                           core1 core2  
L1 000000000000000011111111111111111010000010100000  miss    E    -
L2 000000000000000011111111111111111010000010100000  miss    E    -
L3 000000000000000011111111111111111010000010100000  miss       E

core 2) ST F1, 0000FFFFA000hex; (8-byte store)
                                                           core1 core2  
L1 000000000000000011111111111111111010000000000000  miss    I    M
L2 000000000000000011111111111111111010000000000000  miss    I    I
L3 000000000000000011111111111111111010000000000000  miss       I
first block in cache L3 is sent to memory, then cache blocks L1(1) and L2(1) are invalidated,
then L1(2) is set to M, and L2(2) is set to I, finally L3 is set to I

core 2) ST F3, 0000FFFFA0A0hex; (8-byte load)
                                                           core1 core2  
L1 000000000000000011111111111111111010000010100000  miss    I    M
L2 000000000000000011111111111111111010000010100000  miss    I    I
L3 000000000000000011111111111111111010000010100000  hit        I
cache blocks L1(1) and L2(1) are invalidated,
then L1(2) is set to M, and L2(2) is set to I, L3 is set to I





B) Let us consider the following code fragment of compiler-unscheduled instructions:
      ADDI  R1,R0,0000FFFFA000hex    -- R1 set to base address 0000FFFFA000hex
loop: LD    F1,0(R1)
      LD    F3,8(R1)
      MULTF F2,F1,F0                -- F0 contains a pre-loaded float constant
      MULTF F2,F3,F2
      ADD   R1,R1,16
      LD    F1,0(R1)
      LD    F3,-8(R1)
      ADDF  F6,F3,F1
      MULTF F5,F2,F6
      ST    F5,-16(R1)
      BLI   R1, 000100000000hex,loop  -- compare immediate, branch on less
assuming this code fragment is executed in a statically scheduled pipeline with stages
IF|ID|INT1|INT2|     |ME1|ME2|WB
     |A1  |A2  |A3|            
     |M1  |M2  |M3|M4|
     |Div1-Div8|
(the Div unit is blocking) and proper forwarding units, assuming that branch instructions take a decision in stage ME2, assuming that all LD hit in L1 D-cache during ME1 (but still go through ME2), and that all ST hit during ME2
b1) show a POE (compiler schedule) that minimizes the clock cycles required to complete execution;

Producer/Consumer table
	
	PRODUCER

	CONSUMER
	
	INT
	LD
	FA
	FM
	FDIV

	
	INT
	1
	2
	-
	-
	-

	
	LD
	1
	2
	-
	-
	-

	
	FA
	-
	2
	2
	3
	7

	
	FM
	-
	2
	2
	3
	7

	
	FDIV
	-
	2
	2
	3
	7

	
	ST
	1
	2
	2
	3
	7

	
	
	
	
	
	
	




	
	
	

	Unscheduled
	Scheduled – no register renaming
	Scheduled – register renaming

	ADDI  R1,R0,0000FFFFA000hex 
      nop   
loop: LD    F1,0(R1)
      LD    F3,8(R1)
      nop   
      MULTF F2,F1,F0
      nop   
      nop
      nop
      MULTF F2,F3,F2
      ADD   R1,R1,16
      nop   
      LD    F1,0(R1)
      LD    F3,-8(R1)
      nop   
      nop   
      ADDF  F6,F3,F1
      nop   
      nop   
      MULTF F5,F2,F6
      nop   
      nop   
      nop   
      ST    F5,-16(R1)
      BLI   R1, 000100000000hex,loop  
      DELAY-1
      DELAY-2
      DELAY-3

	[bookmark: OLE_LINK1][bookmark: OLE_LINK2]ADDI  R1,R0,0000FFFFA000hex 
      nop   
loop: LD    F1,0(R1)
      LD    F3,8(R1)
      ADD   R1,R1,16
      MULTF F2,F1,F0
      LD    F1,0(R1)
      nop
      nop
      MULTF F2,F3,F2
      LD    F3,-8(R1)
      nop   
      nop   
      ADDF  F6,F3,F1
      nop   
      nop   
      MULTF F5,F2,F6
      BLI   R1, 000100000000hex,loop  
      nop   
      nop   
      ST    F5,-16(R1)

Branch delay slots scheduled
	ADDI  R1,R0,0000FFFFA000hex 
      nop   
loop: LD    F1,0(R1)
      LD    F3,8(R1)
      ADD   R1,R1,16
      MULTF F2,F1,F0
      LD    F1,0(R1)
      LD    F7,-8(R1)
      nop
      MULTF F2,F3,F2
      ADDF  F6,F7,F1
      nop   
      nop   
      MULTF F5,F2,F6
      BLI   R1, 000100000000hex,loop  
      nop   
      nop   
      ST    F5,-16(R1)

Removed name dependency on F3
      MULTF F2,F3,F2
      LD    F3,-8(R1)





b2) show a ROE for the first iteration of the optimized POE and determine the CPI of the execution of this optimized kernel.

The chart shows the ROE of a scheduled (no register renaming) algorithm, where nops are not included, and the hardware takes care of conflicts.

The number of iterations is (000100000000hex - 0000FFFFA000hex)/16dec = 6000hex/10hex = 600hex = 6*162dec = 1536dec
Each iteration loop executes 11 instructions.
Iterations overlap for (23-2+1)=22 clock cycles, the prologue is 1 clock cycle, the epilogue is 4 clock cycles, so the CPI is (1+1536*22+4)/(1+1536*11)= 2,000177546309996
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	23
	24
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	26
	
27


	ADDI  R1,R0,0000FFFFA000hex
	IF
	ID
	INT1
	INT2
	MEM1
	MEM2
	WB
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	loop: LD    F1,0(R1)
	
	IF
	ID
	ID
	INT1
	INT2
	MEM1
	MEM2
	WB
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD    F3,8(R1)
	
	
	IF
	IF
	ID
	INT1
	INT2
	MEM1
	MEM2
	WB
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	ADD   R1,R1,16
	
	
	
	
	IF
	ID
	INT1
	INT2
	MEM1
	MEM2
	WB
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	MULTF F2,F1,F0
	
	
	
	
	
	IF
	ID
	M1
	M2
	M3
	M4
	MEM1
	MEM2
	WB
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD    F1,0(R1)
	
	
	
	
	
	
	IF
	ID
	INT1
	INT2
	MEM1
	MEM2
	WB
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	MULTF F2,F3,F2
	
	
	
	
	
	
	
	IF
	ID
	ID
	ID
	M1
	M2
	M3
	M4
	MEM1
	MEM2
	WB
	
	
	
	
	
	
	
	
	

	LD    F3,-8(R1)
	
	
	
	
	
	
	
	
	IF
	IF
	IF
	ID
	INT1
	INT2
	MEM1
	MEM2
	WB
	
	
	
	
	
	
	
	
	
	

	ADDF  F6,F3,F1
	
	
	
	
	
	
	
	
	
	
	
	IF
	ID
	ID
	ID
	A1
	A2
	A3
	MEM1
	MEM2
	WB
	
	
	
	
	
	

	MULTF F5,F2,F6
	
	
	
	
	
	
	
	
	
	
	
	
	IF
	IF
	IF
	ID
	ID
	ID
	M1
	M2
	M3
	M4
	MEM1
	MEM2
	WB
	
	

	BLI   R1, 000100000000hex,loop
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	IF
	IF
	IF
	ID
	INT1
	INT2
	MEM1
	MEM2
	WB
	
	
	

	ST    F5,-16(R1)
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	IF
	ID
	ID
	ID
	INT1
	INT2
	MEM1
	MEM2
	WB

	ISTR A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	IF
	IF
	IF
	ID
	canc
	
	
	

	ISTR B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	IF
	canc
	
	
	

	LD    F1,0(R1)
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	IF
	ID
	INT1
	INT2

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	






1/6 



C) The processor runs at 2.6GHz, and has a 64-bit external bus, driven by a memory interface module capable of sustaining 2.2 GT/sec. The external RAM is realized with DDR4 chips (see attached table) and is logically organized with 2 banks, each capable of delivering a 16-bit word. Addressing the memory subsystems requires two bus cycles, and activating a memory row requires 2 bus clock cycles.
c1) Choose a DDR4 module that allows to sustain a burst transfer mode from DDRAM compatible with the memory interface of the processor and estimate the cost of a miss for the above described cache hierarchy;
c2) discuss possible improvements to the memory subsystem organization to reduce the cost of the miss.

C1) The bus interface is capable of 2.2 GT/s, which translates to a maximum bus frequency of 1.1GHz, in the DDR mode. So, DDR4 modules compatible with this constraint are those up to DDR4-2133 included. Using DDR4-2133, the external bus will run at 1066.67MHz.
C2) Tmiss=Taddr+Natt*Tatt+Ntran*Ttrans (values are external bus clock cycles)
The L3 cache line is 64-byte long. Each bank is capable of delivering 2 bytes, so a single activation allows to extract 4 bytes. Accordingly, the number of activations Natt is 64/4=16. The number of transfers Ntran is also 64/4=16, each requiring half clock cycle (DDR mode).
So, Tmiss=2+16*2+16*0,5=42 (external bus clock cycles)
Since the processor clock cycle is 2.6GHz, tha cost of a miss in processor clock cycles is
Tmissprocessor = 2.66/1.066 *42 = 105 (processor clock cycles)



D) Each core of the processor described in A) is organized as a superscalar, 2-way pipeline, that fetches, decodes issues and retires (commits) bundles containing each 2 instructions. The front-end in-order section (fetch and decode) consists of 2 stages. The issue logic takes 1 clock cycle, if the instructions in the bundle are independent, otherwise it takes 2 clock cycles. The architecture supports dynamic speculative execution, and control dependencies from branches are solved when the branch evaluates the condition, even if it is not at commit. The execution model obeys the attached state transition diagram. There is a functional unit (FUs) Int1 for integer arithmetics (arithmetic and local instructions, branches and jumps, no multiplication), 1 FUs FAdd1 for floating point addition/subtraction, 1 FU FMolt1 for floating point multiplication, and a FU for division, FDiv1.
There are 12 integer (R0-R11) and 12 floating point (F0-F11) registers. Speculation is handled through a 8-entry ROB, a pool of 4 Reservation Stations (RS) Rs1-4 shared among all FUs, 2 load buffers Load1 Load2, 1 store buffer Store1 (see the attached execution model): an instruction bundle is first placed in the ROB (if two entries are available), then up to 2 instructions are dispatched to the shared RS (if available) when they are ready for execution and then executed in the proper FU. FUs are pipelined (except for the float division unit, which is blocking) and have the latencies quoted in the following table:

	Int   - 2
	Fadd – 3

	Fmolt – 4
	Fdiv – 8



Further assumption
· The code is assumed to be already in the I-cache; data caches are described in point A) and are assumed empty and invalidated; the cost of a miss is 40.

d1) assuming a write-back protocol for cache management, show state transitions for all instructions in the first iteration and instructions up to PC03 included in the second iteration :

PC01 ADDI  R1,R0,0000FFFFA000hex
PC02 LD    F1,0(R1)
PC03 LD    F3,8(R1)
PC04 MULTF F2,F1,F0          
PC05 MULTF F2,F3,F2
PC06 ADD   R1,R1,16
PC07 LD    F1,0(R1)
PC08 LD    F3,-8(R1)
PC09 ADDF  F6,F3,F1
PC10 MULTF F5,F2,F6
PC11 ST    F5,-16(R1)
PC12 BLI   R1,000100000000hex,PC02
d2) show ROB, RS and buffer status at the issue of the bundle containing PC03 in the second iteration.

 
Dynamic speculative execution 
Decoupled ROB RS execution model

	
	ISTRUCTION
	
	
	INSTRUCTION STATE 

	
	n.
ite
	ROB
pos
	WO
	RE
	DI
	EX
	WB
	RR
	CO

	PC01 ADDI  R1,R0,0000FFFFA000hex
	1
	0
	-
	1
	2
	3-4
	5
	6-68
	69

	PC02 LD    F1,0(R1)
	1
	1
	2-4
	5
	6
	7-66
	67
	68
	69

	PC03 LD    F3,8(R1)
	1
	2
	3-4
	5
	6
	7-67
	68
	69-74
	75

	PC04 MULTF F2,F1,F0          
	1
	3
	3-66
	67
	68
	69-72
	73
	74
	75

	PC05 MULTF F2,F3,F2
	1
	4
	4-72
	73
	74
	75-78
	79
	80
	81

	PC06 ADD   R1,R1,16
	1
	5
	4
	5-6
	7
	8-9
	10
	11-80
	81

	PC07 LD    F1,0(R1)
	1
	6
	5-9
	10-67
	68
	69-70
	71
	72-81
	82

	PC08 LD    F3,-8(R1)
	1
	7
	6-9
	10-68
	69
	70-71
	72
	73-81
	82

	PC09 ADDF  F6,F3,F1
	1
	0
	70-71
	72
	73
	74-76
	77
	78-86
	87

	PC10 MULTF F5,F2,F6
	1
	1
	71-78
	79
	80
	81-84
	85
	86
	87

	PC11 ST    F5,-16(R1)
	1
	2
	76-83
	84
	85
	86-87
	-
	88
	89

	PC12 BLI   R1, 000100000000hex, PC02
	1
	3
	-
	77
	78
	79-80
	-
	81-88
	89

	PC02 LD    F1,0(R1)
	2
	4
	-
	85
	86
	87-88
	89
	90-91
	92

	PC03 LD    F3,8(R1)
	2
	5
	
	86
	87
	88-89
	90
	91
	92

	
	
	
	
	
	
	
	
	
	





RAW not highlighted – structural conflicts in colors (dispatch to reservation station, load buffers, ROB ROB)
L1-Dcache assumed to sustain 2 ops (either 2 LD for any address or 1 LD and 1 ST, provided addresses match different stes)

BLI decides on 80, so NextPC updated on 81, fetch hit I-L1 82-83, decode 84, issue begins 85
No instruction in the ROB after BLI because ROB is full until clock 81 included, so any instruction in the front-end section is cancelled at clock 80.


	
	Reservation station and load/store buffers

	
	Busy
	Op
	Vj
	Vk
	ROBj
	ROBk
	ROB pos
	Address

	Rs1
	
	
	
	
	
	
	
	

	Rs2
	
	
	
	
	
	
	
	

	Rs3
	
	
	
	
	
	
	
	

	Rs4
	
	
	
	
	
	
	
	

	Load1
	Yes
	PC02 LD    F1,0(R1)
	
	
	
	
	4
	[R1]

	Load2
	
	
	
	
	
	
	
	

	Store1
	yes
	PC11 ST F5,-16(R1)
	[Rob1]
	
	
	
	2
	[R1]-16

	
	
	
	
	
	
	
	
	



ROBj ROBk: sources not yet available
ROB pos: ROB entry number where instruction is located

	
	Result Register status

	Integer
	R0
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	
	

	ROB pos
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	state
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Float.
	F0
	F1
	F2
	F3
	F4
	F5
	F6
	F7
	F8
	F9
	F10
	F11
	
	

	ROB pos
	
	4
	
	
	
	1
	0
	
	
	
	
	
	
	

	state
	
	B
	
	
	
	B
	B
	
	
	
	
	
	
	




	Reorder Buffer (ROB)

	 ROB Entry# 
	Busy
	Op
	Status
	Destination
	Value

	0
	0
	PC09 ADDF  F6,F3,F1
	RR
	F6
	[Rob6]+[Rob7]

	1
	1
	PC10 MULTF F5,F2,F6
	RR
	F5
	[Rob0][Rob4]

	2
	2
	PC11 ST    F5,-16(R1)
	DI
	[R1]-16
	[Rob1]

	3
	3
	PC12 BLI   R1, 000100000000hex, PC02
	RR
	
	

	4
	4
	PC02 LD    F1,0(R1)
	RE
	F1
	Mem([R1])

	6
	
	
	
	
	

	7
	
	
	
	
	




CLOCK cycle  85
 






DI
EX
WB
RR
RE
CO

wo

QUEUE



Decoupled execution model for bundled (paired) instructions
The state diagram depicts the model for a dynamically scheduled, speculative execution microarchitecture equipped with a Reorder Buffer (ROB) and a set of Reservation Stations (RS). The ROB and RSs are allocated during the ISSUE phase, denoted as RAT (Register Alias Allocation Table) in INTEL microarchitectures, as follows: a bundle (2 instructions) if fetched from the QUEUE of decoded instructions and ISSUED if there is a couple of consecutive entries in the ROB ( head and tail of the ROB queue do not match); a maximum of two instructions are moved into the RS (if available) when all of their operands are available. Access memory instructions are allocated in the ROB and then moved to a load/store buffer (if available) when operands (address and data, if proper) are available .
States are labelled as follows:
WO:	Waiting for Operands (at least one of the operands is not available)
RE:	Ready for Execution (all operands are available)
DI:	Dispatched (posted to a free RS or load/store buffer)
EX:	Execution (moved to a load/store buffer or to a matching and free UF) 
WB:	Write Back (result is ready and is returned to the Rob by using in exclusive mode the Common Data Bus CDB)
RR:	Ready to Retire (result available or STORE has completed)
CO:	Commit (result is copied to the final ISA register)
State transitions happen at the following events:
 from QUEUE to WO:	ROB entry available, operand missing
from QUEUE to RE:	ROB entry available, all operands available
loop at WO:	waiting for operand(s)
from WO to RE:	all operands available
loop at RE:	waiting for a free RS or load/store buffer
from RE to DI:	RS or load/store buffer available
loop on DI:	waiting for a free UF
from DI to EX:	UF available
loop at EX:	multi-cycle execution in a UF, or waiting for CDB
from EX to WB:	result written to the ROB with exclusive use of CDB
from EX to RR:	STORE completed, branch evaluted
loop at RR:	instruction completed, not at the head of the ROB, or bundled with a not RR instruction
from RR to CO:	bundle of RR instructions at the head of the ROB, no exception raised
Resources
Register-to-Register instructions hold resources as follows:
ROB: from state WO (or RE) up to CO, inclusive;
RS: state DI
UF: EX and WB
Load/Store instructions hold resources as follows:
ROB: from state WO (or RE) up to CO, inclusive;
Load buffer: from state DI up to WB
Store buffer: from state DI up to EX (do not use WB)
Forwarding: a write on the CDB (WB) makes the operand available to the consumer in the same clock cycle. If the consumer is doing a state transition from QUEUE to WO or RE, that operand is made available; if the consumer is in WO, it goes to RE in the same clock cycle of WB for the producer.
Branches: they compute Next-PC and the branch condition in EX and optionally forward Next-PC to the “in-order” section of the pipeline (Fetch states) in the next clock cycle. They do not enter WB and go to RR instead.





	Standard 
name
	Memory
clock
(MHz)
	I/O bus
clock
(MHz)
	Data
rate
(MT/s)
	Module
name
	Peak trans-
fer rate
(MB/s)
	Timings
CL-tRCD-tRP
	CAS
latency
(ns)

	DDR4-1600J*
DDR4-1600K 
DDR4-1600L
	200
	800
	1600
	PC4-12800
	12800
	10-10-10
11-11-11
12-12-12
	12.5 
13.75 
15

	DDR4-1866L*
DDR4-1866M
DDR4-1866N
	233.33
	933.33
	1866.67
	PC4-14900
	14933.33
	12-12-12
13-13-13
14-14-14
	12.857
13.929
15

	DDR4-2133N*
DDR4-2133P
DDR4-2133R
	266.67
	1066.67
	2133.33
	PC4-17000
	17066.67
	14-14-14
15-15-15
16-16-16
	13.125
14.063
15

	DDR4-2400P*
DDR4-2400R
DDR4-2400T
DDR4-2400U
	300
	1200
	2400
	PC4-19200
	19200
	15-15-15
16-16-16
17-17-17
18-18-18
	12.5 
13.32 
14.16 
15

	DDR4-2666T
DDR4-2666U
DDR4-2666V
DDR4-2666W
	333.33
	1333.33
	2666.67
	PC4-21333
	21333.33
	17-17-17
18-18-18
19-19-19
20-20-20
	12.75 
13.50 
14.25 
15

	DDR4-2933V
DDR4-2933W
DDR4-2933Y
DDR4-2933AA
	366.67
	1466.67
	2933.33
	PC4-23466
	23466.67
	19-19-19
20-20-20
21-21-21
22-22-22
	12.96 
13.64 
14.32 
15

	DDR4-3200W
DDR4-3200AA
DDR4-3200AC
	400
	1600
	3200
	PC4-25600
	25600
	20-20-20
22-22-22
24-24-24
	12.5 
13.75 
15



DDR4 Modules
