Advanced Computer Architecture 28 February 2013

A) A processor has the following cache hierarchy: L1 I-cache 16KB, direct mapped, 16-byte block; L1 D-cache 32KB, 2-way associative, 16-byte block; unified L2, 5256 KB, 2-way associative, 32-byte block. The latencies (disregarding virtual memory TLB) expressed in clock cycles are: 2 in L1, 3 in L2.

The processor executes the IA-32 ISA (but with 32-bit addressing mode).

- al) compute the effective dimensions of each cache, and the number of SRAM modules each 4bitsx512 required to build each cache.
- a2) considering two matrixes of 16x16 single precision (8 bytes) floating points values INPUT and OUTPUT, allocated in memory in row-major-order, compute the number of misses incurred upon in the execution of the following matrix transpose algorithm:

```
for (i=0; i<15; i++) {
  for (j=0; j<15; j++) {
    OUTPUT[j][i]=INPUT[i][j];
    }
}</pre>
```

The D-caches are supposed empty. Disregard I-cache.

- a3) Let us denote with PC_BR_INT the program counter of the branch instruction controlling the inner loop of the algorithm, and with PC_BR_EXT that of the external loop. The code is executed on a processor using a BTB (branch target buffer) with 256 entries, 2-bit history each, and a (0,2) prediction algorithm (no correlation, no tournament). The BTB is initially empty. Compute the prediction accuracy, expressed as a percentage of good predictions vs total predictions, for each branch.
- B) A processor has a superscalar, 3-way pipeline, that fetches, decodes issues and retires (commits) bundles containing each 3 instructions. The front-end in-order section (fetch and decode) consists of 3 stages. The issue logic takes 1 clock cycle, if the instructions in the bundle are independent, otherwise it takes 2 clock cycles. The architecture supports dynamic speculative execution, and control dependencies from branches are solved only at commit time, even if the outcome of the branch logic is available earlier. The execution model obeys the attached state transition diagram.

There are 2 functional units (FUs) Int1-INT2 for integer arithmetics (arithmetic and local instructions, branches and jumps, no multiplication), 2 FUS FAdd1-Fadd2 for floating point addition/subtraction, a FU FMolt1 for floating point multiplication, and a FU for division, FDiv1. There are 12 integer (R0-R11) and 12 floating point (F0-F11) registers.

There are 12 integer (R0-R11) and 12 floating point (F0-F11) registers. Speculation is handled through a 12-entry ROB, a pool of 4 Reservation Stations (RS) Rs1-4 shared among all FUs, 2 load buffers Load1-2, 2 store buffers Store1-2 (see the attached execution model): an instruction bundle is first placed in the ROB (if 3 entries are available), a maximum of 4 instructions are dispatched to the shared RS (if available) and then executed in the proper FU. Floating point FUs are pipelined (not the Fdiv one), integers Fus are blocking, and have the latencies quoted in the following table:

Int - 2	Fadd - 3
Fmolt - 5	Fdiv - 6

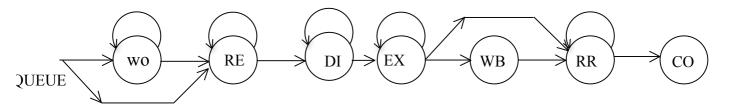
Further assumption

- no BTB
- ullet caches are described in point A) and are assumed empty and invalidated. A miss costs 4 clock cycles.
- b1) in the following code, choose an exadecimal value for the constant "address", so that subsequent memory accesses are properly aligned;
- b2) show state transitions for the instructions of the first iteration of the following code fragment, highlighting conflicts, if any:

```
PC01 MOVI R1,address
PC02 MOVI R2,0X0000000A
PC03 LD
          F1,0(R1)
PC04 ADDI R1,R1,8
PC05 LD
          F2,8(R1)
PC06 SUBI R2,R2,1
PC07 MULTF F1,F1,F0
PC08 MULTF F2,F2,F0
PC09 DIVF F6,F1,F0
PC10 SD
          -8(R1),F6
PC11 ADDF
         F7,F2,F1
PC12 SD
          0(R1),F7
PC13 BNEZ R2,PC03
```

b2) show ROB, RS and buffer status at the issue of PC03 of the SECOND iteration.

Dynamic speculative execution Decoupled ROB RS execution model


ISTRUCTION			INSTRUCTION STATE							
		n.	ROB pos	WO	RE	DI	EX	WB	RR	СО
PC01 MOVI	R1,address	-	pos							
PC02 MOVI	R2,0X0000000A	-								
PC03 LD	F1,0(R1)	1								
PC04 ADDI	R1,R1,8	1								
PC05 LD	F2,8(R1)	1								
PC06 SUBI	R2,R2,1	1								
PC07 MULTF	F1,F1,F0	1								
PC08 MULTF	F2,F2,F0	1								
PC09 DIVF	F6,F1,F0	1								
PC10 SD	-8(R1),F6	1								
PC11 ADDF	F7,F2,F1	1								
PC12 SD	0(R1),F7	1								
PC13 BNEZ	R2,PC03	1								

	Reservation station and load/store buffers									
	Busy	Ор	Vj	Vk	ROB _j	ROB _k	ROB pos	Address		
Rs1										
Rs2										
Rs3										
Rs4										
Load1										
Load2										
Store1										
Store2										

 ${\rm ROB}_{\rm j}~{\rm ROB}_{\rm k} \mbox{:}~{\rm sources}~{\rm not}~{\rm yet}~{\rm available}$ ROB pos: ROB entry number where instruction is located

	Result Register status												
Integer	R0	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	
ROB pos													
state													
Float.	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	
ROB pos													
state													

Reorder Buffer (ROB)									
ROB Entry#	Busy	Op	Status	Destination	Value				
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									

Decoupled execution model for bundled instructions

The state diagram depicts the model for a dynamically scheduled, speculative execution microarchitecture equipped with a Reorder Buffer (ROB) and a set of Reservation Stations (RS). The RSs are allocated during the ISSUE phase, denoted as RAT (Register Alias Allocation Table) in INTEL microarchitectures, as follows: a bundle (3 instructions) if fetched from the QUEUE of decoded instructions and ISSUED if there is a free triplet of consecutive entries in the ROB (head and tail of the ROB queue do not match); 4 instructions (maximum) are moved into RS (if available) when all of their operands are available. Access memory instructions are allocated in the ROB and then moved to a load/store buffer (if available) when operands (address and data, if proper) are available.

States are labelled as follows:

WO: Waiting for Operands (at least one of the operands is not available)

RE: Ready for Execution (all operands are available)
DI: Dispatched (posted to a free RS or load/store buffer)

EX: Execution (moved to a load/store buffer or to a matching and free UF)

WB: Write Back (result is ready and is returned to the Rob by using in exclusive mode the Common Data Bus CDB)

RR: Ready to Retire (result available or STORE has completed)

CO: Commit (result is copied to the final ISA register)

State transitions happen at the following events:

from QUEUE to WO: ROB entry available, operand missing from QUEUE to RE: ROB entry available, all operands available

loop at WO: waiting for operand(s) from WO to RE: all operands available

loop at RE: waiting for a free RS or load/store buffer

from RE to DI: RS or load/store buffer available

loop on DI: waiting for a free UF

from DI to EX: UF available

loop at EX: multi-cycle execution in a UF, or waiting for CDB from EX to WB: result written to the ROB with exclusive use of CDB

from EX to RR: STORE completed, branch evaluted

loop at RR: instruction completed, not at the head of the ROB, or bundled with a not RR instruction

from RR to CO: bundle of RR instructions at the head of the ROB, no exception raised

Resources

Register-to-Register instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive;

RS: state DI UF: EX and WB

Load/Store instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive; Load buffer: from state WO (or RE) up to WB

Store buffer: from state (or RE) up to EX (do not use WB)

Forwarding: a write on the CDB (WB) makes the operand available to the consumer in the same clock cycle. If the consumer is doing a state transition from QUEUE to WO or RE, that operand is made available; if the consumer is in WO, it goes to RE in the same clock cycle of WB for the producer.

Branches: they compute Next-PC and the branch condition in EX and optionally forward Next-PC to the "in-order" section of the pipeline (Fetch states) in the next clock cycle. They do not enter WB and go to RR instead.