
Advanced Computer Architecture
24 February 2014

A) A processor has the following cache hierarchy: 32KB, 2-way L1 I-cache, 32 KB 4-way L1 D-cache,
32-byte block; 1024 KB, 4-way associative, 64-byte block L2 cache; 4MB, 8-way associative, 64-byte
block L3 cache. The latencies (disregarding virtual memory TLB) expressed in clock cycles are: 4 in
L1, 10 in L2, 35 in L3. Copying a block from level 3 to level 2 costs 4 clocks, copying from L2 to
l1 costs 2 clocks. All cache are pipelined, and the L3/ExtBUS interface handles a maximum of 4
outstanding misses.

a1) assuming a write through policy at the L1/L2 and L2/l3 interfaces and a write back policy at
the L3/ExtBUS interface, show a sequence of operations that cause a block replacement in L3.

a2) a C compiler translates the following call to the malloc() function

FM = (double *) malloc(nz * sizeof(double))
using 0x00FBFB00 as the first byte of array element &FM[0]:
Choose a value for nz such that the L1 D-cache undergoes capacity miss during the execution of the
following code fragment:
 for (i=0; i<nz; i++) {&FM[i]= (double) i; }

a3) compute the number of hits and misses in each level of the cache hierarcy if the code fragment
of a2) is executed with nz= 1024 (disregard I-cache).

B) A main memory of 8 GB is attached to the processor described in A) (clocked at 2,33 GHz),
through a 64-bit bus. The memory is setup with SDRAM modules:

PC3-8500 | Unbuffered | Nonparity | 204-pin | 1066 MHz | DDR3 SDRAM

It consists of two interleaved banks (DIMM/0 and DIMM/1), each offering 32-bit words. Estimate the
cost of a miss, assuming that the addressing of the memory interface takes 2 clock cycles, and that
the activation costs 4 clock cycles.

C) The processor has a superscalar, 2-way pipeline, that fetches, decodes issues and retires
(commits) bundles containing each 2 instructions. The front-end in-order section (fetch and decode)
consists of 2 stages. The issue logic takes 1 clock cycle, if the instructions in the bundle are
independent, otherwise it takes 2 clock cycles. The architecture supports dynamic speculative
execution, and control dependencies from branches are solved when the branch evaluates the
condition, even if it is not at commit. The execution model obeys the attached state transition
diagram.
There are 2 functional units (FUs) Int1-INT2 for integer arithmetics (arithmetic and local
instructions, branches and jumps, no multiplication), 2 FUS FAdd1-Fadd2 for floating point
addition/subtraction, a FU FMolt1 for floating point multiplication, and a FU for division, FDiv1.
There are 12 integer (R0-R11) and 12 floating point (F0-F11) registers.
Speculation is handled through a 8-entry ROB, a pool of 4 Reservation Stations (RS) Rs1-4 shared
among all FUs, 2 load buffers Load1-2, 2 store buffers Store1-2 (see the attached execution model):
an instruction bundle is first placed in the ROB (if two entries are available), then up to 2
instructions are dispatched to the shared RS (if available) and then executed in the proper FU. FUs
are pipelined (not the Fdiv one) and have the latencies quoted in the following table:

Int - 2 Fadd – 3
Fmolt – 5 Fdiv – 6

Further assumption
• Data caches are described in point A) and are assumed empty and invalidated.

c1) show state transitions for the instructions of the first two iterations of the following code
fragment (assume the code is already loaded in the I-cache and a conventional L3 miss time of 120
clock cycles), highlighting conflicts, if any:

PC01 MOVI R1, 0x00FBFB00 – set base address of X[0]
PC02 MOVI R5, 1023 – set loop terminating condition
PC03 MOVI R2, 0 -- initialize loop controlling variable
PC04 LD F4,0(R1) -- load X[i]
PC05 LD F5,16(R1) -- load into X[i+2]
PC06 FADD F6,F4,F5
PC07 ST F6,0(R1)
PC08 ADD R2,R2,1 -- increase loop controlling variable
PC09 ADD R1,R1,16 -- advance pointer into array by 2
PC10 BNEQ R5,R2,PC04 -- testing for loop exit condition

c2) show ROB and buffer status at the issue of the PC04 in the second iteration;
c3) discuss the possible unrolling of the loop.
c4) estimate the run time of the code, and the speed up that can be obtained by
 i) raising the processor clock cycle by 10%
 ii) lowering miss penalty by 1%

Dynamic speculative execution

Decoupled ROB RS execution model

ISTRUCTION INSTRUCTION STATE

 n.

ite

ROB

pos
WO RE DI EX WB RR CO

PC01 MOVI R1, 0x00FBFB00

PC02 MOVI R5, 1023

PC03 MOVI R2, 0

PC04 LD F4,0(R1)

PC05 LD F5,16(R1)

PC06 FADD F6,F4,F5

PC07 ST F6,0(R1)

PC08 ADD R2,R2,1

PC09 ADD R1,R1,16

PC10 BNEQ R5,R2,PC04

Load/store buffers

Busy Op Vj Vk ROBj ROBk
ROB

pos
Address

Load1

Load2

Store1

Store2

ROBj ROBk: sources not yet available
ROB pos: ROB entry number where instruction is located

 Result Register status

Integer R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

ROB pos

state

Float. F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

ROB pos

state

Reorder Buffer

 ROB Entry# Busy Op Status Lj Lk Destination Value

1

2

3

4

5

6

7

8

Lj, Lj : operands (use the following notation: V/0 for a Value that is ready, ROBk for a
value that will be produced at ROB position K) see example

 yes operation [3]/0 ROB2 F4

This “operation” has one operand ready read from ROB entry 3, and is waiting for a second
operand that will be produced by ROB entry 2; it will eventually place its result in
register F4.

Decoupled execution model for bundled (paired) instructions

The state diagram depicts the model for a dynamically scheduled, speculative execution microarchitecture equipped with a Reorder Buffer (ROB) and a set of

Reservation Stations (RS). The RSs are allocated during the ISSUE phase, denoted as RAT (Register Alias Allocation Table) in INTEL microarchitectures, as follows:

a bundle (2 instructions) if fetched from the QUEUE of decoded instructions and ISSUED if there is a free couple of consecutive entries in the ROB (head and tail of

the ROB queue do not match); up to two instructions are moved into two RS (if available) when operands are available. Access memory instructions are allocated in the

ROB and then moved to a load/store buffer (if available) when operands (address and data, if proper) are available .

States are labelled as follows:

WO: Waiting for Operands (at least one of the operands is not available)

RE: Ready for Execution (all operands are available)

DI: Dispatched (posted to a free RS or load/store buffer)

EX: Execution (moved to a load/store buffer or to a matching and free UF)

WB: Write Back (result is ready and is returned to the Rob by using in exclusive mode the Common Data Bus CDB)

RR: Ready to Retire (result available or STORE has completed)

CO: Commit (result is copied to the final ISA register)

State transitions happen at the following events:

 from QUEUE to WO: ROB entry available, operand missing

from QUEUE to RE: ROB entry available, all operands available

loop at WO: waiting for operand(s)

from WO to RE: all operands available

loop at RE: waiting for a free RS or load/store buffer

from RE to DI: RS or load/store buffer available

loop on DI: waiting for a free UF

from DI to EX: UF available

loop at EX: multi-cycle execution in a UF, or waiting for CDB

from EX to WB: result written to the ROB with exclusive use of CDB

from EX to RR: STORE completed, branch evaluted

loop at RR: instruction completed, not at the head of the ROB, or bundled with a not RR instruction

from RR to CO: bundle of RR instructions at the head of the ROB, no exception raised

Resources

Register-to-Register instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive;

RS: state DI

UF: EX and WB

Load/Store instructions hold resources as follows:

ROB: from state WO (or RE) up to CO, inclusive;

Load buffer: from state WO (or RE) up to WB

Store buffer: from state WO (or RE) up to EX (do not use WB)

Forwarding: a write on the CDB (WB) makes the operand available to the consumer in the same clock cycle. If the consumer is doing a state transition from QUEUE

to WO or RE, that operand is made available; if the consumer is in WO, it goes to RE in the same clock cycle of WB for the producer.

Branches: they compute Next-PC and the branch condition in EX and optionally forward Next-PC to the “in-order” section of the pipeline (Fetch states) in the next

clock cycle. They do not enter WB and go to RR instead.

wo RE EX WB RR CO
QUEUE

DI

