[bookmark: _GoBack]Advanced Computer Architecture
25-01-2016

A) Let us consider the following code fragment of compiler-unscheduled instructions:
LD F1,-16(R1)
ADDF F2,F1,F0
ST F2,0(R1)
ADD R1,R3,2
a1) list all dependencies;
a2) assuming this code fragment is executed in a statically scheduled pipeline with stages
IF|ID|INT |MEM|WB
 |A1 |A2|A3
 |M1 |M2|M3|M4|M5
and proper forwarding units, show a compiler schedule that minimizes the clock cycles required to complete execution (disregard caches and assume that MEM always takes 1 clock cycle).

B) A server with 128GB RAM is built using 16 processors that embed each four cores that have private L1 caches, while two L2 caches are shared by each couple of cores; the single L3 cache is shared by the four cores. The caches obey the MESI protocol and have the following structure: 16KB, 4-way L1 I-cache and D-cache, each 32-byte block; 512KB, 4-way associative, 64-byte block L2 cache; 8MB, 8-way associative, 128-byte block shared L3 cache. The latencies (disregarding virtual memory TLB) expressed in clock cycles are: 4 in L1, 8 in L2, 24 in L3. Addresses are 48-bit long.
A Ram controller manages the access to a shared bus from each processor. The MESI protocol is enforced throughout the memory hierarchy.
b1) assuming initially empty and invalidated cache lines throughout the hierarchy, consider the following memory accesses
core 1) LD F1, 0000FFFFA000hex;
core 2) LD F2, 0000FFFFA010hex;
core 3) ST F3, 0000FFFFA010hex
core 2) LD F2, 0000FFFFA000hex;
core 4) ST F4, 0000FFFFA000hex;
show the cache blocks involved throughout the memory hierarchy, the sequence of miss/hit in the hierarchy (assume writes are managed with allocate - write-back policy), and the blocks MESI state.
b2) considering a shared array of 64-bit floating point elements X allocated in memory starting at address 0000FFFFA000hex and the following code fragment run on core 1)
for (i=0,imax,i++) {X(i)=0.0};
determine the value of imax that causes the first block replacement in the L1-D cache of core 1).

C) The server RAM is built using 2x8GB DDR3 1600 chips attached to the 64-bit external bus of the processors running at 2.6GHz. The external bus allows a maximum transfer rate of 8 GB/sec.
c1) how many chips are necessary for the whole RAM?
c2) is the memory subsystem (bus+memory chips) well balanced?
c3) the DDR chips allow reading out a 16-byte memory word in a single activation; assuming that addressing takes 2 clock cycles and that memory activation takes 2 clocks if the interleaving factor is 2, 3 clocks for an interleaving of 3, and 5 for an interleaving of 4, choose the memory organization that minimizes a cache miss, and compute the cost of the miss in processor clock cycles.
c4) assuming that imax in code fragment is 1024, determine the numer of hit and of misses in each
cache hierarchy if the code is run in isolation in core 1), with initially empty and invalidated D-caches;
c5) compute the best possible estimate of the clock cycles required to complete the execution of the code fragment with imax=1024;

D) Each core of the processor is organized as a superscalar, 2-way pipeline, that fetches, decodes issues and retires (commits) bundles containing each 2 instructions. The front-end in-order section (fetch and decode) consists of 2 stages. The issue logic takes 1 clock cycle, if the instructions in the bundle are independent, otherwise it takes 2 clock cycles. The architecture supports dynamic speculative execution, and control dependencies from branches are solved when the branch evaluates the condition, even if it is not at commit. The execution model obeys the attached state transition diagram. There is a functional units (FUs) Int1 for integer arithmetics (arithmetic and local instructions, branches and jumps, no multiplication, 2 FUS FAdd1-Fadd2 for floating point addition/subtraction, a FU FMolt1 for floating point multiplication, and a FU for division, FDiv1.
There are 12 integer (R0-R11) and 12 floating point (F0-F11) registers. Speculation is handled through a 6-entry ROB, a pool of 4 Reservation Stations (RS) Rs1-4 shared among all FUs, 1 load buffers Load1, 1 store buffer Store1 (see the attached execution model): an instruction bundle is first placed in the ROB (if two entries are available), then up to 2 instructions are dispatched to the shared RS (if available) when they are ready for execution and then executed in the proper FU. FUs are blocking and have the latencies quoted in the following table:

	Int - 2
	Fadd – 3

	Fmolt – 5
	Fdiv – 6

Further assumption
· The code is assumed to be already in the I-cache; data caches are described in point A) and are assumed empty and invalidated; the cost of a miss is 60.

d1) assuming a write-back protocol for cache management, show state transitions for the instructions of the first iteration of the following code fragment, that scans the 1024 floating elements, each 8-byte, of array X[] and replaces X[i] with X[i]+A (R0 is always 0).

PC01 OR R1,R0,00000FFFFA000hex -- set base address of X[0]
PC02 OR R5,R0,1023dec –- set loop terminating condition
PC03 OR R3,R0,R0 -- initialize loop controlling variable
PC04 LD F0,0(R1) -- load X[i]
PC05 ADDF F2,F1,F0 -- new value for X[i]=X[i]+A (A is stored in F1)
PC06 ST F2,0(R1) -- written back
PC07 ADD R3,R3,1 -- increase loop controlling variable
PC08 ADD R1,R1,8 -- advance pointer into array X
PC09 BL R5,R3,PC04 -- testing for loop exit condition

d2) show ROB, RS and buffer status at the issue of PC04 in the second iteration.

Dynamic speculative execution
Decoupled ROB RS execution model

	
	ISTRUCTION
	
	
	INSTRUCTION STATE

	
	n.
ite
	ROB
pos
	WO
	RE
	DI
	EX
	WB
	RR
	CO

	PC01 OR R1,R0,00000FFFFA000hex
	
	
	
	
	
	
	
	
	

	PC02 OR R5,R0,1023dec
	
	
	
	
	
	
	
	
	

	PC03 OR R3,R0,R0
	
	
	
	
	
	
	
	
	

	PC04 LD F0,0(R1)
	
	
	
	
	
	
	
	
	

	PC05 ADDF F2,F1,F0
	
	
	
	
	
	
	
	
	

	PC06 ST F2,0(R1)
	
	
	
	
	
	
	
	
	

	PC07 ADD R3,R3,1
	
	
	
	
	
	
	
	
	

	PC08 ADD R1,R1,8
	
	
	
	
	
	
	
	
	

	PC09 BL R5,R3,PC04
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	Reservation station and load/store buffers

	
	Busy
	Op
	Vj
	Vk
	ROBj
	ROBk
	ROB pos
	Address

	Rs1
	
	
	
	
	
	
	
	

	Rs2
	
	
	
	
	
	
	
	

	Rs3
	
	
	
	
	
	
	
	

	Rs4
	
	
	
	
	
	
	
	

	Load1
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Store1
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

ROBj ROBk: sources not yet available
ROB pos: ROB entry number where instruction is located

	
	Result Register status

	Integer
	R0
	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	
	

	ROB pos
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	state
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Float.
	F0
	F1
	F2
	F3
	F4
	F5
	F6
	F7
	F8
	F9
	F10
	F11
	
	

	ROB pos
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	state
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Reorder Buffer (ROB)

	 ROB Entry#
	Busy
	Op
	Status
	Destination
	Value

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

DI
EX
WB
RR
RE
CO

wo

QUEUE

Decoupled execution model for bundled (paired) instructions
The state diagram depicts the model for a dynamically scheduled, speculative execution microarchitecture equipped with a Reorder Buffer (ROB) and a set of Reservation Stations (RS). The ROB and RSs are allocated during the ISSUE phase, denoted as RAT (Register Alias Allocation Table) in INTEL microarchitectures, as follows: a bundle (2 instructions) if fetched from the QUEUE of decoded instructions and ISSUED if there is a free couple of consecutive entries in the ROB (head and tail of the ROB queue do not match); a maximum of two instructions are moved into the RS (if available) when all of their operands are available. Access memory instructions are allocated in the ROB and then moved to a load/store buffer (if available) when operands (address and data, if proper) are available .
States are labelled as follows:
WO:	Waiting for Operands (at least one of the operands is not available)
RE:	Ready for Execution (all operands are available)
DI:	Dispatched (posted to a free RS or load/store buffer)
EX:	Execution (moved to a load/store buffer or to a matching and free UF)
WB:	Write Back (result is ready and is returned to the Rob by using in exclusive mode the Common Data Bus CDB)
RR:	Ready to Retire (result available or STORE has completed)
CO:	Commit (result is copied to the final ISA register)
State transitions happen at the following events:
 from QUEUE to WO:	ROB entry available, operand missing
from QUEUE to RE:	ROB entry available, all operands available
loop at WO:	waiting for operand(s)
from WO to RE:	all operands available
loop at RE:	waiting for a free RS or load/store buffer
from RE to DI:	RS or load/store buffer available
loop on DI:	waiting for a free UF
from DI to EX:	UF available
loop at EX:	multi-cycle execution in a UF, or waiting for CDB
from EX to WB:	result written to the ROB with exclusive use of CDB
from EX to RR:	STORE completed, branch evaluted
loop at RR:	instruction completed, not at the head of the ROB, or bundled with a not RR instruction
from RR to CO:	bundle of RR instructions at the head of the ROB, no exception raised
Resources
Register-to-Register instructions hold resources as follows:
ROB: from state WO (or RE) up to CO, inclusive;
RS: state DI
UF: EX and WB
Load/Store instructions hold resources as follows:
ROB: from state WO (or RE) up to CO, inclusive;
Load buffer: from state WO (or RE) up to WB
Store buffer: from state WO (or RE) up to EX (do not use WB)
Forwarding: a write on the CDB (WB) makes the operand available to the consumer in the same clock cycle. If the consumer is doing a state transition from QUEUE to WO or RE, that operand is made available; if the consumer is in WO, it goes to RE in the same clock cycle of WB for the producer.
Branches: they compute Next-PC and the branch condition in EX and optionally forward Next-PC to the “in-order” section of the pipeline (Fetch states) in the next clock cycle. They do not enter WB and go to RR instead.

	Standard name

	Memory clock
(MHz)
	Cycle time
(ns)
	I/O bus clock
(MHz)
	Data rate
(MT/s)
	Module name

	Peak transfer rate
(MB/s)

	DDR3-800D
DDR3-800E
	100
	10
	400
	800
	PC3-6400
	6400

	DDR3-1066E
DDR3-1066F
DDR3-1066G
	133⅓
	7 1⁄2
	533⅓
	1066⅔
	PC3-8500
	8533⅓

	DDR3-1333F*
DDR3-1333G
DDR3-1333H
DDR3-1333J*
	166⅔
	6
	666⅔
	1333⅓
	PC3-10600
	10666⅔

	DDR3-1600G*
DDR3-1600H
DDR3-1600J
DDR3-1600K
	200
	5
	800
	1600
	PC3-12800
	12800

	DDR3-1866J*
DDR3-1866K
DDR3-1866L
DDR3-1866M*
	233⅓
	4 2⁄7
	933⅓
	1866⅔
	PC3-14900
	14933⅓

	DDR3-2133K*
DDR3-2133L
DDR3-2133M
DDR3-2133N*
	266⅔
	3 3⁄4
	1066⅔
	2133⅓
	PC3-17000
	17066⅔

DDR3 standard JEDEC specification (source Wikipedia)

1/6

s

T

i

