
Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

An Introduction to Parallel Programming

Marco Ferretti, Mirto Musci

Dipartimento di Informatica e Sistemistica

University of Pavia

Processor Architectures, Fall 2011

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

De�nition

What is parallel programming?

Parallel computing is the simultaneous use of multiple compute
resources to solve a computational problem

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Outline - Serial Computing

Traditionally, software has been written for serial computation:

To be run on a single CPU;

A problem is broken into a discrete series of instructions.

Instructions are executed one after another.

Only one instruction may execute at any moment

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Outline - Parallel Computing

Simultaneous use of multiple compute resources to solve a
computational problem:

To be run using multiple CPUs
A problem is broken into discrete parts, solved concurrently
Each part is broken down to a series of instructions
Instructions from each part execute simultaneously on di�erent
CPUs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

The Real World is Massively Parallel

Parallel computing attempts to emulate what have always been the
state of a�airs in the natural world: many complex, interrelated
events happening at the same time, yet within a sequence

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Why Parallel Computing?

Save time and/or money

Solve larger problems

Provide concurrency (e.g. the Access Grid)

Use of non-local resources (e.g. SETI@home)

Limits to serial computing, physycal and practical

Transmission speeds
Miniaturization
Economic limitations

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Application I

Traditional Applications

High performance computing:

Atmosphere, Earth, Environment
Physics - applied, nuclear, particle, condensed matter, high
pressure, fusion, photonics
Bioscience, Biotechnology, Genetics
Chemistry, Molecular Sciences
Geology, Seismology
Mechanical Engineering modeling
Circuit Design, Computer Science, Mathematics

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Application II

Emergent Applications

Nowadays, industry is THE driving force:

Databases, data mining
Oil exploration
Web search engines, web based business services
Medical imaging and diagnosis
Pharmaceutical design
Financial and economic modeling
Advanced graphics and virtual reality
Collaborative work environments

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Flynn's Classical Taxonomy

There are di�erent ways to classify parallel computers.

Flynn's Taxonomy (1966) distinguishes multi-processor
architecture by instruction and data:

SISD � Single Instruction, Single Data
SIMD � Single Instruction, Multiple Data
MISD � Multiple Instruction, Single Data
MIMD � Multiple Instruction, Multiple Data

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Flynn's Classical Taxonomy - SISD

Serial (non-parallel) computer

Single Instruction: Only one
instruction stream acted on by the
CPU during a clock cycle

Single Data: Only one data stream in
input

Deterministic execution

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Flynn's Classical Taxonomy - SIMD

Single Instruction: All CPUs execute
the same instruction at a given clock
cycle

Multiple Data: Each CPU can operate
on a di�erent data element

Problems characterized by high
regularity, such as graphics processing

Synchronous (lockstep) and
deterministic execution

Vector processors and GPU Computing

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Flynn's Classical Taxonomy - MISD

Multiple Instruction: Each CPU
operates on the data independently

Single Data: A single data stream for
multiple CPU

Very few practical uses for this type of
classi�cation.

Example: Multiple cryptography
algorithms attempting to crack a
single coded message.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Flynn's Classical Taxonomy - MIMD

Multiple Instruction: Every processor
may be executing a di�erent
instruction stream

Multiple Data: Every processor may be
working with a di�erent data stream

Synchronous or asynchronous,
deterministic or non-deterministic

Examples: most supercomputers,
networked clusters and "grids",
multi-core PCs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Motivation
Taxonomy

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Shared Memory Architecture

Shared memory: all processors access all memory as a global
address space.

CPUs operate independently but share memory resources.

Changes in a memory location e�ected by one processor are
visible to all other processors.

Two main classes based upon memory access times: UMA and
NUMA.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Uni�ed Memory Access

Uniform Memory Access (UMA):

Identical processors

Equal access and access times to memory

Cache coherent: if one processor updates a location in shared
memory, all the other processors know about the update.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Non-Uniform Memory Access

Non-Uniform Memory Access (NUMA):

Often made by physically linking two or more SMPs

One SMP can directly access memory of another SMP

Not all processors have equal access time to all memories

Memory access across link is slower

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Pros and Cons

Advantages

Global address space is easy to program

Data sharing is fast and uniform due to the proximity
memory/CPUs

Disadvantages

Lack of scalability between memory and CPUs

Programmer responsibility for synchronization

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

General Characteristics

Communication network to connect inter-processor memory.

Processors have their own local memory.

No concept of global address space

CPUs operate independently.

Change to local memory have no e�ect on the memory of
other processors.
Cache coherency does not apply.

Data communication and synchronization are programmer's
responsibility

Connection used for data transfer varies (es. Ethernet)

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Simple Diagram

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Hybrid Distributed-Shared Memory

The largest and fastest computers in the world today employ
hybrid architectures.

The shared memory component can be a cache coherent SMP
machine and/or graphics processing units (GPU).

The distributed memory component is the networking of
multiple SMP/GPU machines, which know only about their
own memory.

Network communications are required to move data from one
SMP/GPU to another.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory
Distributed Memory
Hybrid Architecture

Simple Diagram

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Overview

Several parallel programming models in common use:

Shared Memory / Threads
Distributed Memory / Message Passing
Hybrid
GPGPU
... and many more

Parallel programming models exist as an abstraction above
hardware and memory architectures.

No "best" model, although there are better implementations
of some models over others.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Overview II

Models are NOT speci�c to a particular machine or architecture.

Shared model on a distributed memory machine: KSR1

Machine is physically distributed, but appear global
Virtual Shared Memory

Distributed model on a shared memory machine: Origin 2000.

CC-NUMA architecture
Tasks see global address space, but use MP

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Introduction

Multiple processes or light threads with uni�ed memory vision

Need for careful synchronization

Programmer is responsible for determining all parallelism.

Application Domain

Number crunching on single, heavily parallel machines

Desktop applications

In Hpc or industrial application is seldom used by itself
(clustering)

but Intel is developing Cluster OpenMP...

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Threading Model

Similar to a single program that includes a number of
subroutines:

a.out performs some serial work, and then creates a number of
tasks (threads) that can be scheduled and run concurrently.
Each thread has local data, but also shares the entire resources
of a.out
A thread's work could be seen as a subroutine
Threads communicate through global memory.
Threads come and go, but a.out remains

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Implementations

Explicit approaches

Linux: Pthreads library

Library based; requires parallel coding
C Language only
Very explicit parallelism

Microsoft Windows Threading

Frameworks

Intel TBB

OpenMP

Distributed shared memory OS (research topic)

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

OpenMP

It's not a library: series of compiler directives or pragmas

#pragma omp parallel ...
requires explicit compiler supports

Features:

Automatic data layout and decomposition
Incremental parallelism: one portion of program at one time
Uni�ed code for both serial and parallel applications
Coarse-grained and �ne-grained parallelism possible
Scalability is limited by memory architecture

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Distributed Memory / Message Passing Model

Multiple tasks on arbitrary number of machines, each with
local memory.
Tasks exchange data through communications by sending and
receiving messages.
Data transfer usually requires cooperative operations

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

MPI: introduction

Language independente API speci�cation: allows processes to
communicate with one another by sending and receiving
messages

De facto standard for HPC on clusters and supercomputers

MPI was created in 1992; �rst standard appeared in 1994.
Superseded PVM.

Various implementations

OpenMPI: open source, widespread; faculties and accademic
istitution; several top500 supercomputers
commercial implementations from HP, Intel, and Microsoft
(derived from the early MPICH)
custom implementations, parts in assembler or even in
hardware (research topic)

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

MPI: features

Very portable: language and architecture independent

MPI hide communication complexities between distributed
processes

virtual topology
synchronization

Single process maps to single processor

Need for an external agent (mpirun, mpiexec) to coordinate
and manage task assignment and program termination

Original (serial) application must be rewritten

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

MPI: functions

Library Functions

Point-to-point communication

synchronous
asynchronous
bu�ered
ready forms

Broadcast and multicast communication

Fast and safe combination of partial results: gather and reduce

Node synchronization: barrier

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

GPGPU: Introduction

Using a GPU to perform computation in applications
traditionally handled by the CPU

Made possible by rendering pipeline modi�cation:

addition of programmable stages
higher precision arithmetic

Allows software developers to use stream processing on
non-graphics data.

Especially suitable for applications that exhibit:

Compute Intensity
Data Parallelism
Data Locality

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Standards

CUDA and Stream

Respectively NVDIA and AMD standards

Framework for explicit GPU programming

Language extension, library and runtime environments

Common features:

Heavily threaded (ten of thousands)
Multi-level parallelism: Grid, Blocks, threads, weave...
Explicit memory copy to/from CPU
Linear Bidimensional memory access (texture memory)

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Application domains

Where GPGPU has been used succesfully

Raytracing Global illumination (not normally supported by the
rendering pipeline)

Physical based simulation and physics engines

Weather forecasting
Climate research
Molecular modeling, ...

Computational �nance, Medical imaging, Digital signal
processing, Database operations, Cryptography and
cryptanalysis, Fast Fourier transform, ...

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Hybrid Model

Combines the previously described programming models

Well suited for cluster of SMP machines

Example: Using MPI with GPU programming.

GPUs perform intensive kernels using local, on-node data
MPI handles communications

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Implementations

Prevalence of ad hoc solutions

New Standards

Compiler Directives

OpenHMPP
OpenMP 3.x

Programming Libraries: OpenCL

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

OpenCL

Host-Device abstraction: handles any sort of parallel
computing domain

CPU to CPU
CPU to GPU
CPU to DSP or any embedded device

Need for explicit hardware support

NVIDIA, ATI, AMD support OpenCL
Unfortunately low embedded device support

Similar to CUDA, but more generic and somewhat less
programmer-friendly

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

Summary

Parallel techologies are pervasive

Lot of possible approaches

Continue development and innovation

Future developement?

Hybrid techologies are the key but: need for hardware support
and programmers assistance

GPU Computing will become common in desktop and
embedded system

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Automatic vs Manual Paralelization

Automatic

Compiler analyzes code and identi�es parallelism
Attempt to compute if actually improves performance
Loops are the most frequent target

Manual - Understand the problem

Parallelizable Problem

Calculate the potential energy for several molecule's

conformations. Find the minimum energy conformation.

A Non-Parallelizable Problem

The Fibonacci Series

All calculations are dependent

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Keywords

Parallel Design Keywords

Synchronization

Communications

Data Dependance

Load Balancing

Granularity

Partitioning

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Synchronization

De�nition

The coordination of parallel tasks in real time

Barrier

Each task performs its work until it stops at the barrier
When the last task arrives, all tasks are synchronized
What happens from here varies (serial work or task release)

Lock / semaphore

Used to protect access to global data or a section of code.
Only one task at a time may �own� the lock
Other tasks can attempt to acquire the lock but must wait
until release.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Communications

De�nition

Data exchange between parallel tasks

Who Needs Communications?

Embarrassingly parallel (e.g. operation on indipendent pixels)
Most problems are not that simple (e.g. 3D heat di�usion)

Factors to Consider:

Cost of communications
Latency vs. Bandwidth
Visibility of communications
Synchronous vs. asynchronous communications
Scope of communications (point-to-point, collective)

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Communications Complexity

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Data Dependencies

De�nition

A dependence exists between program statements when the order
of statement execution a�ects the results of the program

Results from multiple use of the same storage by di�erent
tasks.

Primary inhibitors to parallelism.

Loop carried dependencies are particularly important

How to Handle Data Dependencies:

Distributed: communicate data at synchronization points.
Shared: synchronize read/write operations between tasks.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Loop Carried Dependence

Loop carried data dependence

for (j=1; j<N; j++) {

vect[j] = vect [j-1] * 2;

}

vect[J-1] must be computed before vect[J]: data dependency

If Task 2 has vect[J] and task 1 has vect[J-1], computing the
correct value necessitates:

Distributed: task 2 must obtain the value of vect[J-1] from
task 1 after it �nishes computation
Shared: task 2 must read vect[J-1] after task 1 updates it

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Lood Independent Dependence

Loop independent data dependence

task 1 task 2

------ ------

X = 2 X = 4

. .

. .

Y = X**2 Y = X**3

As before, parallelism is inhibited.

The value of Y is dependent on:

Distributed: if or when the value of X is communicated
between the tasks.
Shared: which task last stores the value of X.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Load Balancing

De�nition

Practice of distributing work among tasks so that all tasks are kept
busy all of the time: minimization of task idle time.

Important for performance reason
Example: if all tasks are subject to a barrier, the slowest will
determine overall performance.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Load Balancing II

How to Achieve Load Balance:

Equally partition the work each task receives

For array/matrix operations: evenly distribute the data set.
For loop iterations: evenly distribute the iterations.
Heterogeneous mix of machines: analysis tool to detect
imbalances.

Use dynamic work assignment

Certain problems result in load imbalances anyway

Sparse arrays

Adaptive grid methods

If workload is variable or unpredictable: use a scheduler. As
each task �nishes, it queues to get a new piece of work.
Design an algorithm which detects and handles load
imbalances as they occur.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Granularity

Granularity: The ratio of computation to
communication

Fine: Low computation, high
communication

High communication overhead
Facilitates load balancing

Coarse: High computation, low
communication

Potential for performance
Harder to load balance e�ciently

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Partitioning

One of the �rst steps in design is to break the problem into
discrete "chunks" of work that can be distributed to multiple
tasks.

Two basic ways:

Domain decomposition
Functional decomposition

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Domain Decomposition

Data associated with a problem is decomposed. Each parallel task
then works on a portion of of the data.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Functional Decomposition

Problem is decomposed according to the computation rather than
to data. Each task then performs a portion of the overall work.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Signal Processing Example

An audio signal data set is passed through four distinct
computational �lters. Each �lter is a separate process. The �rst
segment of data must pass through the �rst �lter before
progressing to the second. When it does, the second segment of
data passes through the �rst �lter. By the time the fourth segment
of data is in the �rst �lter, all four tasks are busy.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Outline

1 Memory Architecture
Shared Memory
Distributed Memory
Hybrid Architecture

2 Parallel programming models
Shared Memory Model
Message Passing Model
GPGPU
Hybrid Model

3 Designing Parallel Programs
General Characteristics
Partitioning
Limits and Costs

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Complexity

Parallel applications could be much more complex

Multiple instruction streams
Data �owing

The costs of complexity are measured in programmer time in
every aspect of the development cycle:

Design
Coding
Debugging
Maintenance

Good software development practices are essential when
working with parallel applications

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Portability

Thanks to standardization in several APIs, portability issues
are not as serious as in years past

However, all of the usual serial portability issues apply

Implementations
Operating systems
Hardware architectures

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Resource Requirements

Decrease in wall clock time, often means increase in CPU time

The amount of memory required can be greater

Data replication
Overheads

For short parallel programs, performance can decrease

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Amdahl's Law I

Potential program speedup is de�ned by the fraction of code
(P) that can be parallelized:

speedup=
1

1−P

If none of the code can be parallelized, P = 0 and the speedup
= 1 (no speedup). If all of the code is parallelized, P = 1 and
the speedup is in�nite (in theory).

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

Amdahl's Law II

Introducing the number N of processors (S is serial part):

speedup=
1

P

N
+S

There are limits to the scalability of parallelism.

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Speed Up

Linear SpeedUp: Ideally, doubling the number of CPUS the execution time is

halved (Speedup = N)

In reality, this happens hardly ever, because some software cannot be

completely parallelized

Amdalh’s law

This law gives the theoretical speedup a parallel application can achieve

Be:

● S the fraction of the code that cannot be parallelized (serial execution)

● P the fraction of the code that can be parallelized

● S + P = 1

Amdalh’s law

Observations:

● From the first limit: the fraction of serial code is a bound of the

scalability

● From the second limit: if there wasn’t any serial code, the speed up is

equal to N (linear speed)

Amdalh’s law: an example

If Serial Code is 10% (S = 0.10 and P = 0.90), the highest speedup we can get

is 10, regardless the number of CPU used

Amdalh’s law: a graphical explanation

p = fraction of the code which can be

executed in parallel mode

ɑ = fraction of the code which can be

executed in serial mode

n = core number

s = SpeedUp

Limit of the Parallel Programming

Speedup is strongly affected by the fraction of serial code

Limit of the Parallel Programming

Speedup is strongly affected by the fraction of serial code

Superlinear speed

Some application might achieve performance even better than the linear

speed, that is S > N

This might happen for several reasons, for example due to the CPU cache

Scalability

Quite similar to the SpeedUp but instead of considering the execution time of the
serial implementation, it takes the execution time of the parallel implementation
with a parallel degree equal to 1

Scalability

● Strong Scaling (Amdahl)
○ The total problem size stays fixed as more processors are added.

○ Goal is to run the same problem size faster

○ Perfect scaling means problem is solved in 1/P time (compared to serial)

● Weak Scaling (Gustafson)
○ The problem size per processor stays fixed as more processors are added.

○ The total problem size is proportional to the number of processors used

○ Goal is to run larger problem in same amount of time

○ Perfect scaling means problem P runs in same time as single processor run

Introduction
Memory Architecture

Parallel programming models
Designing Parallel Programs

General Characteristics
Partitioning
Limits and Costs

The Future:

During the past 20+ years, the trends indicated that parallelism is
the future of computing.
In this same period, 1000x increase in supercomputer performance.
The race is already on for Exascale Computing!

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

Appendix For Further Reading

For Further Reading I

A. Grama, A. Gupta
Introduction to Parallel Computing

Addison-Weasley, 2003.

Blaise Barney
Introduction to Parallel Computing, 2011
https://computing.llnl.gov/tutorials/

Marco Ferretti, Mirto Musci An Introduction to Parallel Programming

https://computing.llnl.gov/tutorials/

	Memory Architecture
	Shared Memory
	Distributed Memory
	Hybrid Architecture

	Parallel programming models
	Shared Memory Model
	Message Passing Model
	GPGPU
	Hybrid Model

	Designing Parallel Programs
	General Characteristics
	Partitioning
	Limits and Costs

	Appendix

