24.11.2021

Parallel Computing with MPI

Luigi Santangelo
luigi.santangelo@unipv.it

University of Pavia

Roadmap

e Overview

What parallel computing is

Why it is so important

Parallel Computing Memory Architectures
Speed Up and Scalability

Functional and Domain Decomposition

e MPI: Point-to-Point functions
Communicators

Datatypes

Send and Receive functions

Synchronous, Blocking, Bufferend and Standard functions

o O O O O

O O O O

Roadmap

e MPI: Collective functions

Barrier, Broadcast

Scatter, Gather

AllGather, AllIToAll

Reduce, AlIReduce, ReduceScatter
o Scan

e Building an MPI Cluster using Google Cloud

o O O O

Parallel computing
an overview

Serial Computing

Many techniques for
speeding up the execution:

pipelining

loop unrolling

branch prediction
speculation

register renaming
dynamic scheduling
out-of-order completion
and soon

instructions

Parallel Computing

problem instructions

~ il | 1-E=
~ il | |-E
~ il | |-E
~ il | -

Control and
Coordination

What do we need for parallel computing?

E@ A single computer with multiple processors/cores

An arbitrary number of such computers connected by a network
% (cluster)

A single multicore system

e [IBMBG/Q Compute Chip
e 18cores
e 16L2cacheunits

HE S| 2
FHE L2 3
Hi 12

A cluster of stand-alone computers

Parallel Computing in daily life

,Fexs 1698 - A

. D
| Springfield

Rush Hour Traffic Plat Tectonics Weather

Parallel Computing Memory Architectures

Parallel Computing

T
| l |

Hybrid
Shared Memory Distributed Memory Distributed-Shared
Memory

| |

Uniform Memory Not Uniform Memory
Access (UMA) Access (NUMA)

Shared Memory: Uniform Memory Access

e CPUsareidentical toeach others
Memory is shared among all
processes

A single global space address
Changes are seen by all processes
Equal access times to memory

Each CPU has got its own cache
o Cache-coherency provided at
hardware-level

Shared Memory: Not-Uniform Memory Access

e Memory is shared among CPUs CPU CPU
e Asingle global space address
e Memory access time is not

I
|

uniform anymore ' | Memory Memory
o faster for accessinginto local :
memory :
. . I

o slower for a.ccessmg into other ' | Memory Memory
Cpu memories I
I

Shared Memory: trade-offs

5 A

Global address space provides a Lack of scalability between memory
user-friendly programming and CPUs: adding more CPUs can
geometrically increases traffic on
the shared memory-CPU path

Data sharing between tasks is both
fast and uniform

E Memory Memory | 1

Programmer responsibility for
synchronization constructs that
ensure "correct" access of global
memory

E Memory Memory E

=l

Distributed Memory

Each CPU has its own local memory

No Global Addressing

Data changes don't have any effect on the memory of other CPUs
No Cache Coherence

CPUs communicate through network

Distributed Memory: trade-offs

HE &/

The system is scalable (increasing Programmer is responsible for
the number of CPUs, the size of data exchange
memory increases too)

Getting data stored in remote
CPUs can fastly access to their own node is slower than local data
memory

network

Hybrid Distributed-Shared Memory

The largest and fastest computers in the world today employ both shared
and distributed memory architectures.

e CPUs
e GPUs
e Internode communication
e Intranode communication

Hybrid Distributed-Shared Memory: trade-offs

All advantages of distributed and All disadvantages of distributed
shared memory and shared memory

Speed Up

. Timeserial
Tz'meparallel (N)

Speedup(N)

Linear SpeedUp: Ideally, doubling the number of CPUS the execution time is
halved (Speedup = N)

In reality, this happens hardly ever, because some software cannot be
completely parallelized

Amdalh's law

This law gives the theoretical speedup a parallel application can achieve

Be:

e Sthe fraction of the code that cannot be parallelized (serial execution)

e P thefraction of the code that can be parallelized
o S+P=1

S d (7\7) Ti?T)'eseria-l (S + P)Tserzal S + P 1
peeaup\ . —
P P IT'IZ(’nepa.rallel(i]V) S - Tserzal + L Tsemal S + ~ S + £

Amdalh's law

1 1
lim ! = 1 lim = =N

P S P
N— o S—-0 _
S+ — S+
N N ot N

Observations:

e From the first limit: the fraction of serial code is a bound of the

scalability
e From the second limit: if there wasn’t any serial code, the speed up is

equal to N (linear speed)

Amdalh's law: an example

If Serial Code is 10% (S = 0.10 and P = 0.90), the highest speedup we can get
is 10, regardless the number of CPU used

Amdalh's law: a graphical explanation

p =060 a= 0.40 . .
o8 T 540 Jn=15s=1 p = fraction of the code which can be

[030 1 040 In=2,5=143 executed in parallel mode
|02] 040 |n=3,s=167

015 1040]n=4,5=182 . .
012 nm5 sm=192 a = fraction of the code which can be

0.10 n=6,s=2 executed in serial mode

0033 [040]n=18,s=2.31

: n = core number
0012 [040]n=50,s=2.43

o002 TR n =500,5 =245 © PeedUp

1 1

= = = 1.43
S+L 040+ 28

Speedup(2) =

Limit of the Parallel Programming

Speedup is strongly affected by the fraction of serial code

speedup
N P = .50 P = .90 P = .95 P = .99 1 1
_________________________________ Speedup(100,000) = = 55— = 99.90
S+ N 0.01 + 100,000

10 1.82 5.26 6.89
100 1.98 9.17 16.80
1,000 1.99 9.91 19.62
10,000 1.99 9.91 19.96
100,000 1.99 9.99 19.99

Limit of the Parallel Programming

Speedup is strongly affected by the fraction of serial code

25 p—T—T——— T
Parallel Portion
250 — \

e remn

20

15

Speedup

10
5

g

Superlinear speed

Some application might achieve performance even better than the linear
speed, thatis S >N

This might happen for several reasons, for example due to the CPU cache

Scalability

.Tpa.'r allel (1)
Tpa.'r allel (A/T')

Quite similar to the SpeedUp but instead of considering the execution time of the
serial implementation, it takes the execution time of the parallel implementation
with a parallel degree equal to 1

Scalability(N) =

Scalability

e StrongScaling (Amdahl)
o Thetotal problem size stays fixed as more processors are added.
o Goalistorunthe same problem size faster
o Perfect scaling means problem is solved in 1/P time (compared to serial)
e Weak Scaling (Gustafson)
o The problem size per processor stays fixed as more processors are added.
o Thetotal problem size is proportional to the number of processors used
o Goalistorun larger problemin same amount of time
o Perfect scaling means problem P runs in same time as single processor run

Limit of scalability

Load balancing
Synchronization
Communication
Overhead

Parallel Programming Models

There are several parallel programming models in common use

e Shared Memory (without threads, using semaphores or locks to
prevent race conditions and deadlock)

Threads (pThread, OpenMP)

Distributed Memory / Message Passing (MPI)

Data Parallel

Hybrid (MPI + OpenMP/pThread)

Single Program Multiple Data (SPMD)

Multiple Program Multiple Data (MPMD)

Non-parallelizable applications

Not all applications can be parallelized.
Let’s consider the Fibonacci sequence: {1, 1, 2, 3,5, 8, 13, 21, ...}
if n=0o0rn=1

1
f(n) = ,
f(n=1+f(n=2) ifn=>2

This problem is not parallelizable because each f(n) can be computed only
when f(n-1) and f(n-2) have been computed

Non-parallelizable applications

Using 4 different CPUs is useless because each
CPU needs to wait until the required results are
available.

So, even using N cores, the time to complete the
parallel execution is the same as the serial
execution

Data dependency problem

Parallelizable applications: decomposition

One of the first steps in designing a parallel program is to break the problem
into discrete chunks of work that can be distributed to multiple tasks:

e Domain Decomposition
e Functional Decomposition

Domain Decomposition

Problem Data Set

task 0 task 1 task 2 task 3

Functional Decomposition

Problem Instruction Set

A example of Domain Decomposition

Suppose we want to compute the Geometric Series
N
= 2 xl
i=1

Suppose that we want to parallelize this computation using P = 4 different
cores and N is a multiple of P. Then, the original formula can be rewritten
into

N
P P N _
_(,)+ —(i—=1)+j
]] Z Si=2xp

j=1

A example of Domain Decomposition

G16 — 21+22+23+24+25+26+27+28+29+210+211+212+213+214+215+216

Processor 1 21422423424
Processor 2 25426427428
Processor 3 29421042114212

Processor 4 2134914, 915, 916

A example of Domain Decomposition

Each S. can be assigned to each core.

In the last step, the outermost sum is
computed.

Serial computation time: T

Parallel computation time: T/P

]

g

Parallel Computing Tradeoffs

If domain or problem can be decomposed, using P
concurrent processes we can:

1. Reduce the execution time
2. Reduce the amount of memory required by each
process

On the opposite

1. Communication between processes is needed
a. Inthe Geometric Series, each process communicates
the result to process #2
2. Synchronization between processes is required
a. process A cannot send a message to process Bif Bis
not waiting for the message sent by A

]

[

I

Synchronization and
Communication

MPI: an introduction

What is MPIl: Message Passing Interface

e [tisnot:
o acompiler
o alibrary
o aframework
o aprogramming language

e It's aspecification, a standard, an interface, not an implementation
o MPI Forum: https://www.mpi-forum.org/
o Version 4.0 released on June, the 9th 2021
o The complete specification can be found at:
m https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
m 1139 pages

https://www.mpi-forum.org/
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

What is MPI

e There are many implementation
o OpenMPI (https://www.open-mpi.org/) - Open Source
o IntelMPI (https://www.intel.com/)
o MVAPICH (http://mvapich.cse.ohio-state.edu/)
o Rookie (https://www.rookiehpc.com/)

©)

e FEach implementation has its own version
o OpenMPl 4.1.1 implements the specification 4.0
e There are many implementation for different programming language
o C/C++
o Fortran
o Java

https://www.open-mpi.org/

How to Install OpenMPI

on Centos8

yum install gcc

yum install gcc-c++

yum install make

cd ~/Download

wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.1.tar.gz

tar -xzvf openmpi-4.1.1.tar.gz

cd openmpi-4.1.1/

Jconfigure --prefix=/usr/local/openmpi-4.1.1

make -j 4 all

make install

vi ~/.bashrc
o MPI_HOME=/usr/local/openmpi-4.1.1
o PATH=$MPI_HOME/bin:$HOME

MPI call format in C/C++

All functions in MPI have a similar format:

err = MPI Xxxxxx (parameters, ..)
e prefix MPI_
e only first letter uppercase
e all functions return an integer error code
e parameters can be either “in” or “out”

Where to get help

® man pages
o ie.man MPI Init

e https://www.open-mpi.org/doc/current/

e https://www.rookiehpc.com/mpi/docs/

https://www.open-mpi.org/doc/current/
https://www.rookiehpc.com/mpi/docs/mpi_scatter.php

Communication Environment

MPI Tnit

e itinitializes the communication environment
e all processes need to use it before any other
e itiscalled only onetime per process

MPI Finalize

e it finalizes the communication environment
e itisnot possible touse any other MPI function after that

MPIL_Init and MPI_Finalizes

int MPI Init(int *argc, char **argv)

int MPI Finalize (void)

parameters argc and argv are those that are taken by main method

void main (int argc, char *argv[]) {

Communicator

A communicator is a collection
of processes sharing attributes
Each process is identified inside
its communicator (rank)

Two processes can
communicate only if they
belong to the same
communicator
MPI_COMM_WORLD is the
default communicator

Q0|0
Q|0 0|0
o)[o)jo)lo,
OOOO

Communicator size

e |tisthenumber of the
processes belonging to the same
communicator

e MPI Comm size:functionfor
getting the size of a
communicator

e MPI Comm rank:function for
getting the ID of a process

e convention: process O = master

Q0|0
Q|0 0|0
o)[o)jo)lo,
OOOO

MPI_Comm_size and MPI_Comm_rank

int MPI Comm size (MPI_Comm comm, int *size)

int MPI Comm rank (MPI Comm comm, int *rank)

e comm:the communication we want to know

e size: pointer to an integer variable (it will contain the size of the Comm)

e rank: pointer to an integer variable (it will contain the rank of the
process)

The first program: exampleoi.c

#include <stdio.h>
#include <mpi.h>
void main (int argc, char *argv([]) {
int myrank, size;
/* 1. Initialize MPI */
MPI Init (&argc, &argv);
/* 2. Get my rank */
MPI Comm rank (MPI COMM WORLD, &myrank);
/* 3. Get the total number of processes */
MPI Comm size (MPI COMM WORLD, &size);
/* 4. Print myrank and size */
printf ("Process %$d of %d \n", myrank, size);
/* 5. Terminate MPI */
MPI Finalize ();

There is no reference to the number
of processes to be executed

Compiling and running the program

> mpicc exampleOl.c -o exampleO1

>mpirun-n4 examp|e01 all 4 processes are executed on localhost

Process 0 of 4
Process 2 of 4
Process 1 of 4
Process 3 of 4

Your turn

e runthe program using a different number of processes
e why indexes in the output do appear out of order?
e different program executions will give the output in the same order?

Keep in mind

The correct execution of the program must not depend on the process
number

This means that your code has to work properly regardless the number of
processes used

The message structure

Processes communicate using messages

A message is made by:

Envelope
o sender/receiver: the ID of the sender/receiver process
o communicator: the ID of the group where processes belong to
o tag:the ID of the message
Body
o buffer: the message to send / receive

(@)

(@)

datatype: the type of the message (see next)
count: the number of occurrences of the datatype

All sender and
receiving functions
manage all these
parameters

MPI_Datatype

MPI Datatype C Type
MPI INT signed int
MPI FLOAT float

MPI_DOUBLE double

Complex datatype (for example structured data) can be defined as well.

MPI_CHAR

signed char

MPI_UNSIGNED LONG

unsigned long int

Different types of communications

Processes can communicate using:

1. Point to Point functions

2. Collective functions

MPI: point-to-point functions

Point-to-point functions

Communication mode Blocking Routines Non-Blocking Routines
Synchronous MPI_Ssend / MPI_Recv MPI_Issend / MPI_Recv
Buffered MPI_Bsend / MPI_Recv MPI_Ibsend / MPI_Recv
Ready MPI_Rsend / MPI_Recv MPI_Irsend / MPIl_Recv
Standard MPI_Send / MPI_Recv MPI_Isend / MPI_Irecv

Blocking Synchronous Send (MPI_Ssend)

MPI_Recv can either
MPI_SSEND| (blocking synchronous send) be invoked before or

after MPI_Ssend

data transfer
from source
complete

+—task waits

—4 wait

recaiving task w aits
Ready-to-send MPLRECY until buffer is filleﬂ

Message

Ready-to-receive
Message

Blocking Buffered Send (MPI_Bsend)

MPI_BSEND| (buffered send)

data transfer to
copy datal user-supplied
to buffer buffler complete

R ——————————————————— .
%ask w aits

MPI_RECY

BE CAREFUL:
programmer is responsible for
managing user-supplied buffer

MPI_Recv can either
be invoked before or
after MPI_Ssend

longer wait for the receiver
because of the system
overhead (due to the copy of
the message from the buffer)

Blocking Ready Send (MPI_Rsend)

Ready-To-Send message is
dropped, but receiver MUST
invoke MPI_Recv BEFORE
MPI_Rsend is invoked

MPI_RSEND)| (blocking ready send)

data transfer
from source
complete

MPI_RECV

receiving task w aits
until buffer is filled

Standard Send (MPI_Send) [eager protocoll

MPI SEND (blOCkll’lg standard send) Different behaviour for
— small and large messages
size <|threshold for taking advantages of
- data transfer buffered implementation
from source
complete

T data transfer to
MPI RECV | wuser's buffer is
complete

Standard Send (MPI_Send) [rendezvous protocoll

MPI_SEND | (blocking standard send) Different behaviour for
- data transfer small and large messages

for taking advantages of
from source

synchronous
oompl cte implementation

size > | threshold

transfer doesn't begin data transfer to user's
until word has arrived VLY buffer is complete
that corresponding

MPI_RECV has been posted

How to know the threshold?

ompl info --all | grep btl tcp eager limit

ompl info --all | grep btl sm eager limilt

tcp: communications happen through network (internode

communications)

sm: communications happen through shared memory

(internode communications)

Choosing the right communication mode

Advantages Disadvantages
Synchronous | Send/Recv order is not critical; Can incur synchronous overhead;
No extra buffer space; Handshake required (ready-messages);
Ready Lowest total overhead Recv must precede Send;
No extra buffer space;
No handshake
Buffered Decouples Send from Recv System overhead due to the copy of the buffer
(message is buffered on sender side)
No sync overhead on Sender;
Programmer must control buffer;
Send/Recv order is not critical;
Standard Good for many cases Protocol is determined by MPI implementation

Deadlock

Using blocking functions might incur in MPI_SEND
deadlock

A Y

This means that both functions stop
program execution until the messageisnot B ———-----------
received/sent by the counterpart.

MPI_SEND

For example: if P1 invokes MPI_Send for
sending a message to P, the execution of P,
is blocked until P, does not invoke the
corresponding MP|_Recv

Non-Blocking functions

For each blocking function (synchronized, buffered, ready and standard)
there is a corresponding non-blocking function with a similar behaviour.

The only difference is that sending a receiving functions never block the
task execution.

But we need to use MPIl_Wait function.

Let’s describe only the MPI_Isend and MPI_Irecv functions (non-blocking
standard functions)

Non-Blocking Standard Sender (MPI_lsend)

MPI_ISEND

(nonblocking standard send)

size <|threshold no delay even though

MPI WAIT | messageis not yet inuser's
_ buffer on receiving node

S
R N el T —
MPI_WAIT
e e MPLRECY] L
avoided if MPI_IRECV no delay if MPI_WAIT
is late enough

posted early enough

Non-Blocking Standard Sender (MPI_lsend)

MPI_ISEND

size >|threshold

(nonblocking standard send)

MPI_WAIT

data transfer
from source
complete

R ----------------- 7—N§ _____ F ———
transfer doesn't begin MPI IRECV MPI_WAIT
until word has arrived — . .
that corresponding no interruption if

MPI_IRECV has been posted

wait is late enough

MPI: point-to-point functions
Examples

MPIl_Send

int MPI Send(void *buf,int count , MPI Datatype dtype,
int dest,int tag, MPI Comm comm)

buf: Initial address of send buffer

count: Number of elements send message
dtype: Datatype of each send buffer element
dest: Rank of destination

tag: Message tag

comm: Communicator

envelope

MPI_Recv

int MPI Recv(void *buf, int count, MPI Datatype dtype,
int src, int tag, MPI_Comm comm,
MPI Status *status)

buf: Initial address of receive buffer

count: Maximum number of elements to receive message
dtype: Datatype of each receive buffer entry

src: Rank of source

tag: Message tag envelope
comm: communicator

status: Status object (information about the received message)

Sending and receiving data: exampleo2.c

1#include <stdio.h>

2#include <mpi.h> : : :
3void main (int argc, char *argv[]) { Asmgle Integer Is sent
4 between 2 processes
5 MPI Status status;

6 int myrank, size;

7 int buf = 125;

8

9 MPI Init(&argc, &argv);

10 MPI Comm rank(MPI COMM WORLD, &myrank);

11 if (myrank == 0)

12 {

13 // I'm the master

14 int retVal = MPI Send(&buf, 1, MPI INT, 1, 555, MPI_COMM WORLD);

15 }

16 else

17 {

18 //I'm the slave

19 int retVal = MPI Recv(&buf, 1, MPI INT, €, 555, MPI COMM WORLD, &status);
20 printf("I'm the slave; I received %d from process 0.\n", buf);

21 }

22

23 MPI Finalize();

24}

Some considerations

e Thereceiver can get the message if the envelope specified by the
receiver is exactly the same as the envelope specified by sender
o REMIND: envelop = source /destination + communicator + tag
e MPI _Send and MPI_Recv are blocking

o Sender waits until receiver gets the message
o Receiver waits until sender sends the message

Your turn

Can the application work even using a different process number?
What happens if | run the code with -n 4? Why?
c. Canwe avoid blocking application execution?
a. solution:else if (myrank == 1)
d. What happens if | run the code replacing the tag on the receiver side to
554? Why?
e. Trytosendacharinstead of ainteger
f. Trytosendan array of 10 integers (see example03)

o

Sending and receiving data: exampleo3.c

1#include <stdio.h>
2#include <mpi.h>
3#include <stdlib.h>

4|

5#define MAX 10

6

7void main (int argc, char *argv[]) {

8

9 MPI Status status;

10 int myrank, size;

11 int buf[MAX];

12

13 MPI Init(&argc, &argv);

14 MPI_Comm_rank(MPI_COMM WORLD, &myrank);

15 if (myrank == 0)

16 {

117/ // I'm the master

18 for (int i = 0; i < MAX; ++1i) buf[i] = l+rand()%100;

19 int retVal = MPI Send(buf, MAX, MPI INT, 1, 555, MPI_COMM WORLD);
20 }

21 else

22 {

23 //I'm the slave

24 int retVal = MPI Recv(buf, MAX, MPI_INT, 0, 555, MPI_COMM WORLD, &status);
25 printf("I'm the slave; I received the following values:\n");
26 for (int i = 0; i < MAX; ++i) printf("%d\n", buf[i]);

27 }

28

29 MPI Finalize();

A vector of integers is sent
between 2 processes

Your turn

a. Instead of sending a vector of 10 integers in one shot, let’s send the
vector in ten steps (one integer per send). Here again, only two
processes involved in the communication

Switching protocols: example03.1.c

1j#include <stdio.h>
2#include <mpi.h>

3#include <unistd.h> SW’tCh from eager to
4

5void main (int argc, char *argv[]) { rendezvous protocol
6

7 MPI Status status; . .
8 int myrank, size; An array of integers is sent
9 // the message sender wants to send

10 int MAX = 10 between 2 processes
11 int buf[MAX]; buf[0] = 100;

12

13 MPI Init(&argc, &argv);

14 MPI Comm rank(MPI_COMM WORLD, &myrank);

15 if (myrank == 0)

16 { . .

17 printf("I'm the master: ready to send\n"); change this variable from
18 // I'm the master tag communicator

19 int retval = MPI_Send(&buf, MAX, MPI_INT, 1, 555, MPI_COMM WORLD); 10to 1024

20 printf("I'm the master: completed\n");

21 }

22 else

23 {

24 // we pretend the slave is very busy

25 sleep(10);

26 printf("I'm the slave: ready to receive\n");

27 //I'm the slave tag communicator

28 int retval = MPI _Recv(&buf, MAX, MPI_INT, 0, 555, MPI_COMM WORLD, &status);

29 printf("I'm the slave; I received %d from process 0.\n", buf[0]);

Summing up integers: exampleo4.c

28void main (int argc, char *argv[]) {

MPI Status status;
int myrank, size, retVal;
int sumMaster = 0;
int sumSlave = 0;

MPI Init(&argc, &argv);
MPI Comm_rank(MPI_COMM WORLD, &myrank);
if (myrank == 0)

{

else

}

// I'm the master

int buf[MAX];

initializeArray(buf, MAX);

printArray(buf, MAX);

retVal = MPI_Send(buf, MAX, MPI_INT, 1, 555, MPI_COMM WORLD);

sumMaster = computeSum(buf, 0, (MAX/2)-1);

retVal = MPI Recv(&sumSlave, 1, MPI INT, 1, 555, MPI_COMM WORLD, &status);
printf("La somma degli elementi dell'array e %d\n", sumMaster+sumSlave);

//1'm the slave

int buf[MAX];

retVal = MPI_Recv(buf, MAX, MPI_INT, 0, 555, MPI_COMM WORLD, &status);
sumSlave = computeSum(buf, MAX/2, MAX-1);

retVal = MPI Send(&sumSlave, 1, MPI INT, 0, 555, MPI_COMM WORLD);

MPI Finalize();

Summing integer elements
between 2 processes

mpirun -n 2 example04.o

Good to know

All the former examples have been working only using two processes

For all of them, using more processes never work (the completion time
is always the same)

e The following examples will use several processes

o No assumption will be done on the number of processes (the parallel
applications will work regardless the process number)

Summing up integers: exampleos.c

Suppose we have the following vector of 13 integers and we want to sum up

all the elements using 4 different processes N =13
P=4

Q=N/P=3

R=N%P=1

N1

from (RANK*Q) to ((RANK+1)*Q - 1)

Summing up integers: exampleos.c

38 MPI Comm rank(MPI_COMM WORLD, &myrank);
39 MPI Comm size(MPI COMM WORLD, &size); . .
40 Summing integer elements
41 g = MAX / size;
42 r = MAX % size; between n processes
43
44 if (myrank == 0)
45 { H
i T - mpirun -n 4 exampleO04.o
47 int buf[MAX];
48 initializeArray(buf, MAX);
49 printArray(buf, MAX);
50 for (int p = 1; p < size; ++p)
51 retvVal = MPI Send(buf, MAX, MPI _INT, p, 55 \V/
52 sumMaster = computeSum(buf, (myrank*q), ((myrank+1)*¥)-1);
master mpuft the vector’'s h sumMaster = sumMaster + computeSum(buf, MAX-r, MAX

for (int p = 1; p < size; ++p)

. 55 i {
master receives slave’s computation > MPI_Recv(&sumSlave, 1, MPI_INT, p, 555, MPI_COMM WORLD, &status);
57 totalSumSlave = totalSumSlave + sumSlave;

//1'm the slave
int buf[MAX];
retVal = MPI_Recv(buf, MAX, MPI_INT, O,

printf("La somma degli elementi dell'array e %d\n", sumMaster+totalSumSlave);

555, MPI_COMM WORLD, &status);
sumSlave = computeSum(buf, (myrank*q), ((myrank+1) lav m | Wwn
retVal = MPI Send(&sumSlave, 1, MPI _INT, 0, 555, MPINCOMM WORLD);

Observation

Parallel execution among 4 processes

Slave processes compute sum operation using only 3 integers

Master instead makes more work (because of the vector’s tail)

The execution ends when all processes complete their own execution
o the slower processes slows down the application execution
o balancing problem

e Thewhole vector is sent to all slave processes (not just the data each

slave should work on)
o communication time problem

How can we send to the slave processes only the data they really need?

Summing up integers: example06.c

40

41 g = MAX / size; . .

42 r = MAX % size: Summing integer elements
43

b 0¥ igrank =8 betwgen N processes but
45 { reducing the total amount of
46 // I'm the master

47 int buf[MAX]; data sent

48 initializeArray(buf, MAX);

49 printArray(buf, MAX);

50 for (int p = 1; p < size; ++p)

51 retVal = MPI_Send(&buf[q*p], q, MPI_INT, p, 555, MPI_ Only a small section of the vector is sent
52 sumMaster = computeSum(buf, (myrank*q), ((myrank+1)*q)-1);

53 sumMaster = sumMaster + computeSum(buf, MAX-r, MAX-1);

54 for (int p = 1; p < size; ++p)

55 {

56 MPI Recv(&sumSlave, 1, MPI_INT, p, 555, MPI_COMM WORLD, &status);

57 totalSumSlave = totalSumSlave + sumSlave;

58

59 printf("La somma degli elementi dell'array € %d\n", sumMaster+totalSumSlave);

60 }

61 else

62 {

63 //1'm the slave

64 int buf[MAX];

65 retval = MPI_Recv(buf, g, MPI_INT, 0, 555, MPI_COMM WO]]

66 sumSlave = computeSum(buf, 0, g-1); The whole (little) vector is computed

67 retVal = MPI_Send(&sumSlave, 1, MPI INT, 0, 555, MPI_CO —

68 }

Your turn

e Canthe code on exampleO5 and example06 be executed with 3 parallel
process without any changes? And with 100?

e Inexample05 and example0é6, initialization is only made by master (in
serial way). Is there a way to parallelize initialization process?

e Think about a method to reduce the long-tail effect on the master

Parallel Sort: overview

a

10

/////// \\\\\\\

a0 13 1011
mergeSort(al, c) mergeSort(al, c)
a0 [0[2]4]5]6]8]13] 1|3]7|9|10]11f12
| merge(a0. al;a)
a [of1]2]3]a]s]6]7]s]o]10]11]12]13]

al

al

Parallel Sort (with merging): exampleo7.c

101
102
103
104
105
106
107
108
109
110
111
112
11
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

if (myrank == 0)

{

int array[MAX];

int sortedArray[MAX];
int tmp[MAX];

int arrayMaster[g+r];
int sortedArraySlave[ql;

initializeArray(array, MAX);
printArray(array, MAX);

for (int p = 1; p < size; ++p)
retVal = MPI Send(&array[qg*p+r], q, MPI_INT, p, 555,

copy(array, arrayMaster, g+r);
sort(arrayMaster, q+r); // arrayMaster is now sorted
copy(arrayMaster, sortedArray, q+r);
for (int p = 1; p < size; ++p)
MPI Recv(sortedArraySlave, q, MPI_INT, p, 555, MPI_COM
copy(sortedArray, tmp, (p+1)*q+r);
merge(tmp, (p+l)*g+r, sortedArraySlave, q, sortedArray

}
printArray(sortedArray, MAX);

Only a small section of the vector is sent

master orders its own subvector

master receives ordered vectors from slaves

[
master merges all subvectors

Parallel Sort (with merging): exampleo7.c

131 else

132 {

133 int arraySlave[ql; _

134 retVal = MPI Recv(arraySlave, q, MPI INT, 0, 5§ slave receives a small vector
135 sort(arraySlave, q);

123 y retVal = MPI Send(arraySlave, q, MPI INT, 0, 5 sending back sorted vector
138

139 MPI Finalize();

140 }

Computing & in parallel: overview

We know that in general if f(x) is a integrable function:

/f(x)dx— lim Zf h with f.=f(a+ih) and h=

N— oo i=1

by S 4h | 1
Tocomputenr w= dx = Iim z , withh = —
0 1+X2 N—- oo 1=1 1+(lh)2 N

N
Using a very enough large N T Z > with h= i
i=1 1+ (1h) N

Computing & in parallel: overview

e Theinterval[O, 1]is splitinto N
parts

e FEachpartisassignedtoa
process p.

e eachp.process works on its
own sub-interval
~ e process p,gathers all results
< and sum them up all together

Computing & in parallel: example08.c

19

20 MPI Init(&argc, &argv);

21 MPI Comm_rank(MPI_COMM WORLD, &myrank);
22 MPI_Comm_size(MPI_COMM WORLD, &P);

23

24 double h = 1.0/N;

25 int i = myrank+1;

26 double sum = 0.0;

27

28 while (i <= N)

29 {

30 sum = sum + 4*h/(1l+pow2(i*h));
31 i=1+P;

32 }

33

34 if (myrank == 0)

35 {

36 for (int p = 1; p < P; ++p)

37, {

38 MPI Recv(&buff, 1, MPI DOUBLE, p, 555, MPI_COMM WORLD, &status);
39 sum = sum + buff;

40 }

41 printf("%5.30f\n", sum);

42 }

43 else

44 {

45 MPI Send(&sum, 1, MPI DOUBLE, 0, 555, MPI_COMM WORLD);
46 }

47

48 MPI Finalize();

Embarrassingly parallelism

An embarrassingly parallel program is one where little or no effort is needed
to separate the problem into a number of parallel tasks.

This is often the case where there is little or no dependency or need for
communication between those parallel tasks, or for results between them

Computing the Pl is an embarrassingly parallel problem

Your turn: communication ring

e process Oreads aninteger from
standard standard input

e process 0sends the integer to
process 1

e process 1receives the integer,
decrease it and sends forward to
process 2

e thecycle goesonuntil the last
process gets the integer.

e Thelast process sends back the
integer to O, that displays the number

MPI_Ssend

buf: initial buffer

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination

tag: message tag

comm: communicator

MPI_Ssend: examplei13.c

MPI_Status status;
int rank, size;

int i;
/* data to communicate =/
double matrix[MSIZE];

/% Start up MPI */

MPI_Init(&argc, &argu);
MPI_Comm_rank{(MPI_COMM_WORLD, &rank);
MPI_Comm_size{MPI_COMM_WORLD, &size);

if {(rank == 8) {
for (i = 0; 1 < MSIZE; i++)
matrix[i] = (double) i;
MPI_Ssend(matrix, MSIZE, MPI_DOUBLE, 1, 666, MPI_COMM_WORLD);

} else if (rank == 1) {
MPI_Recu(matrix, MSIZE, MPI_DOUBLE, 8, 666, MPI_COMM_WORLD, &status);
printf("“Process 1 receives an array of size %d from process 8.\n", MSIZE);

MPI_Bsend

buf: initial buffer

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination

tag: message tag
comm: communicator

Attaching and detaching

MPI Buffer attach(void *buf, int size)

MPI Buffer detach(void *buf, int *size)

MPI_BSEND_OVERHEAD
represents the size, in bytes, of the memory overhead generated everytime
an MPI_Bsend or MPI_Ibsend is issued.

MPI_Bsend: examplei4.c

int main (int argec, char *argv[]) {

MPI_Status status;

int rank, size, i, mpibuffer length;
double *mpibuffer;

double vector[MSIZE];

/* Start up MPI */
MPI Init(&argc, &argv);
MPI Comm_rank (MPI_COMM WORLD, &rank); MPI_Comm_size (MPI_COMM WORLD, &size);

if (rank == 0) {
for (i = 0; i < MSIZE; i++) vector[i] = (double) 1i;
mpibuffer length = (MSIZE * sizeof (double) + MPI_BSEND OVERHEAD computes the size of the buffer considering
mpibuffer = (double *) malloc (mpibuffer length); the overhead introduced by BSEND

MPI Buffer attach (mpibuffer, mpibuffer length);
MPI_Bsend (vector, MSIZE, MPI_DOUBLE, 1, 666, MPI_COMM WORLD) ;
MPI Buffer detach (mpibuffer, &mpibuffer length) ;
} else if (rank == 1) {
MPI_Recv(vector, MSIZE, MPI_DOUBLE, 0, 666, MPI_COMM WORLD, &status);

MPIl_Sendrecv

int MPI Sendrecv(void *sbuf,int scount,MPI Datatype s dtype,
int dest,int stag,void *dbuf,int dcount,MPI Datatype d_type,
int src,int dtag,MPI Comm comm, MPI Status *status)

sbuf: initial buffer for sender
scount: number of elements in
send buffer

s_dtype: datatype of each buffer
element sent

dest: rank of destination

stag: message tag for sending
comm: communicator

dbuf : initial buffer for receiver
dcount: number of elements in
receiver buffer

d_type: datatype of each buffer
element received

src: the sender’s rank

dtag: receive tag

status

Circular Shift

Let’s suppose now that, differently
from the previous one, we want
that all processes send a message
to the neighbor at the same time
(all of thein T1)

Using SEND and RECEIVE
functions arise a Deadlock
(because there is correspondence
between sending and receiving,
but using MPI|_Sendrecv we drop
the problem

Circular Shift: example09.c

void main (int argc, char *argv[])

{
MPI Status status;
int rank, size, tag, to, from;
int A[MSIZE], B[MSIZE], i;

MPI Init(&argc, &argv);
MPI_Comm rank(MPI_COMM WORLD, &rank);
MPI Comm size(MPI COMM WORLD, &size);

to = (rank + 1) % size;
from = (rank + size - 1) % size;

for (i = 0; 1 < MSIZE; ++i)

A[i] = rank;
MPI Sendrecv(A, MSIZE, MPI INT, to, 201, /* sending info */
B, MSIZE, MPI INT, from, 201, /* receiving info */

MPI COMM WORLD, &status);

printf("Proc %d sends %d integers to proc %d\n", rank, MSIZE, to);
printf("Proc %d receives %d integers from proc %d\n", rank, MSIZE, from);

MPI Finalize();

MPI_Isend

e similar to MPI_Send
e request:pointerto be usedin MPI_Wait

MPI_Issend

e similar to MPI_Ssend
e request:pointerto be usedin MPI_Wait

MPI_lbsend

e similar to MPI _Bsend
e request:pointerto be usedin MPI_Wait

MPI_Irsend

e similarto MPI_Rsend
e request:pointerto be usedin MPI_Wait

MPIL_Irecv

e similar to MPI_Recv
e request:pointerto be usedin MPI_Wait

MPI_Wait

e request:pointerusedin MPI_I*send

Using non-blocking functions: example1o0.c

MPI Status status;
MPI Request request = MPI_REQUEST NULL;

MPI_Init(&argc, &argv);

MPI Comm size(MPI COMM WORLD, &size); //number of processes
MPI_Comm_rank(MPI_COMM WORLD, &rank); //rank of current process

if (rank == 0) {

printf("Enter a value to send to processor %d:\n", destination);

scanf("%d", &buffer);

//non blocking send to destination process

MPI Isend(&buffer, count, MPI INT, destination, tag, MPI COMM WORLD, &request);
}

if (rank == destination) {

//destination process receives

MPI_Irecv(&buffer, count, MPI_INT, 0, tag, MPI_COMM WORLD, &request);
}

//bloks and waits for destination process to receive datd
MPI_Wait(&request, &status);

if (rank == 0) {
printf("processor %d sent %d\n", rank, buffer);

if (rank == destination) {
printf("processor %d got %d\n", rank, buffer);

MPI Finalize();

Exercises

Exercises

e Ping Pong: write a program in which two processes repeatedly pass a
message back and forth

e Rotating: each process stores it own rank, then sends this value to the
process on its right. The process continues passing on the values they
receive until they get their own rank back. Each process should finish
by printing out the sum of the values.

Exercises

Ordering: consider a 2-dimensional matrix. Each row is ordered

Exercises

e Simple Array Assignment: The master task initiates numtasks-1
number of worker tasks and then distributes an equal portion of the
array to each worker. Each worker receives its portion of the array and
performs a simple value assignment to each of its elements. The value
assigned to each element is simply that element's index in the array
plus 1. Each worker then sends its portion of the array back to the
master. As the master receives a portion of the array from each worker,
selected elements are displayed.

Exercises

Matrix Multiplication: This example is a simple matrix multiplication
program, i.e. AxB=C. Matrix A is copied to every processor. Matrix B is
divided into blocks and distributed among processors. The data is
distributed among the workers who perform the actual multiplication
in smaller blocks and send back their results to the master.

MPI: collective functions

Collective functions

When communication involves all processes, instead of using point-to-point
functions. Three classes:

e Synchronization

o MPI_Barrier
e Global Communication (data movement)

o MPI_Bcast, MPI_Scatter, MPI_Gather, MPI_Allgather, MP|_Alltoall
e Global Reduction (collective computation)

o MPI_Reduce, MPI_Allreduce, MP|_Reduce_scatter, MPI_Scan

Synchronization: MPI_Barrier

Blocks until all processes in the group
of the same communicator
Used for synchronization

MPI_Barner()

©
O
O
TERC

m

T3

OOOO:

T2

T4

MPI_Barrier()

©OJO

©

OO0

MPI_Barrier

MPI_Barrier: exampleis.c

1ftinclude <stdio.h>

2#include <stdlib.h>

3#include <mpi.h>

4#include <unistd.h>

5

6 /**

7 * @brief Illustrates how to use an MPI barrier.
8 **/

9int main(int argc, char* argv[])
10 {

11 MPI Init(&argc, &argv);

13 // Get my rank
14 int my rank;
15 MPI_Comm_rank(MPI_COMM WORLD, &my rank);

16

17 // we pretend process 1 is very busy, so he waits too much time working on its stuff

18 if (my rank == 1) sleep(10);

19 printf("[MPI process %d] I start waiting on the barrier.\n", my_rank);

20 MPI Barrier(MPI_COMM WORLD) ;

21 printf("[MPI process %d] I know all MPI processes have waited on the barrier.\n", my_rank);
22

23 MPI Finalize();

24

25 return EXIT SUCCESS;

Global communication: MPI_Bcast

Before MPI_Bcast The same datais sent from

Process | Process 2 Process 3 Process 4

the master process to the
1 O D D other processes

After MPI_Bcast

Process | Process 2 Process 3 Process 4

o] (o] o] [

MPI_Bcast

e buffer: point to the buffer
e count: number of entries in the buffer
e root: rank of process master (who sends data to each others)

MPI_Bcast: examplei16.c

1jtinclude <stdio.h>
2#include <stdlib.h>
3#include <mpi.h>

4

5int main(int argc, char* argv[])

6{

MPI Init(&argc, &argv);

// Get my rank in the communicator

int my rank;

MPI Comm rank(MPI_COMM WORLD, &my rank);

int buffer;
if(my rank == 0)

// data to be broadcasted. it can be any type of data (even a vector, of course)

buffer = 12345;

printf("[MPI process %d] I am the broadcast root, and send value %d.\n", my_rank, buffer);
// the MPI Bcast function is invoked by all processes, either master and all workers
MPI Bcast(&buffer, 1, MPI INT, 6, MPI_COMM WORLD);
if(my _rank != 0)

printf("[MPI process %d] I am a broadcast receiver, and obtained value %d.\n", my_rank, buffer);

MPI Finalize();

return EXIT_SUCCESS;

Global communication: MPIl_Scatter

Before MPI_Scatter
Process 1 Process 2 Process 3 Process 4 The vector of datais Spllt inN parts (Where

N is the number of processes). Each part is
sent to each process

After MPI_Scatter

Process 1 Process 2 Process 3 Process 4

mim|m|n

MPI_Scatter

sendbuf: address of send buffer (significant only for root)
sendcount: number of elements sent to each process
recvbuf: address of receive buffer

recvcount: number of elements received

root: rank of process master (who sends data to each others)

MPI_Scatter: example17.c

29int main(int argc, char* argv[])
30 {
31 MPI_Init(&argc, &argv);

33 // Get my rank
34 int my rank;
35 MPI_Comm_rank(MPI_COMM WORLD, &my rank);

36

37/ // Get number of processes and check that the buffer size can be splitted among all processes
38 int size;

39 MPI Comm size(MPI_COMM WORLD, &size);

40

41 if (N % size != 0)

42 {

43 if (my _rank == 0) printf("The number %d of elements in the array cannot be splitted among all
44 MPI Finalize();

45 return 0;

46 }

47

48 int buffer to send[N]; // buffer used by the master to scatter data
49 int buffer to recv[N/size]; // smaller buffer used by the worker

50

51 if(my rank == 0)

52 {

53 initializeArray(buffer to send, N);

54 printf("Values to scatter from process 0:\n");

55 printArray(buffer_to send, N);

56 }

57 // Scatter data to all processes: it sends N/size elements to each worker

58 MPI Scatter(buffer to send, N/size, MPI _INT, buffer to recv, N/size, MPI INT, ©, MPI_COMM WORLD);
59 // all processes compute their data and show the result

Global communication: MPI_Gather

Before MPI_Gather

Process 1 Process 2 Process 3 Process 4

ojnjojo

After MPI_Gather

Process 1 Process 2 Process 3 Process 4

e

MPI_Gather

sendbuf: address of send buffer

sendcount: number of elements sent from each process
recvbuf: address of receive buffer

recvcount: number of elements received

root: rank of process master (who receives data to each others)

MPI_Gather: example18.c

20int main(int argc, char* argv[])
214
22 MPI Init(&argc, &argv);

24 // Get my rank
25 int my rank;
26 MPI Comm_ rank(MPI_COMM WORLD, &my rank);

27

28 // Get number of processes and check that the buffer size can be splitted among all processes
29 int size;

30 MPI Comm size(MPI_COMM WORLD, &size);

31

32 int buffer to send[N]; // buffer used by the all workers

33 int buffer to recv[N*size]; // larger buffer used by the worker to gather all data

35 // all processes initialize their own buffer to send
36 initializeArray(buffer to send, N);
37

38 // Data are gathered by master
39 MPI_Gather(buffer to send, N, MPI_INT, buffer to recv, N, MPI_INT, ©, MPI_COMM WORLD);

40 // master shows compute the gathered data

41 if (my _rank == 0) printArray(buffer to recv, N*size);
42

43 MPI Finalize();

44

45 return EXIT SUCCESS;

Putting gather, scatter and broadcast together

Process 0

Process 1

3 6] 17, 15 Ol | 480

13| 15 6| 12 6 | 354

9 1 2 7 12| | 142

10 19 3 6 16/ | 246
Matrix Vector Result

The original matrix is split in P parts, where P is the number of
processes. Each process computes multiplication of the submatrix and
the vector. Then the result is stores in a subvector. All subvectors are
concat together

Matrix multiplication: examplei2.c

For simplicity, we suppose that N is a multiple of P

1. Process Oinitializes matrix and vector, then print both

2. Process O scatters matrix to all processes

3. Process O broadcasts vectors to all processes

4. Each process computes matrix multiplication, the stores the resultsin a
local vector

Process O gathers all local vectors, getting the final result

Process O visualizes the final result

o

Matrix multiplication: examplei2.c

MPI Status status;
int myrank, P;

// To keep algorithm simple, we fix to 2, 4 or 8 the number of processes
// and 8, 16 or 32 the size of the square matrix and the vector
// where 8 is a multiple of 4

MPI Init(&argc, &argv);
MPI Comm_rank(MPI_COMM WORLD, &myrank);
MPI_Comm size(MPI COMM WORLD, &P);

int sendMatrix[N][N];
int recvMatrix[N/P][N];
int vector[N];

int localResult[N/P];
int result[N];

if (myrank == 0)

{
// inizialize sendMatrix and vector]
initializeMatrix(N, N, sendMatrix);

TiTtialiZeVector(N. Nactor)s -~ Process O initializes matrix and
. | ep 1:)
e vector, then prints both

printMatrix (N, N, sendMatrix);
printf("\n");
printf("Vector:\n");
printVector(N, vector);

Matrix multiplication: examplei2.c

Process O scatters matrix to all
processes

// Scatter sendMatrix to all processes

MPI_Scatter(sendMatrix, N*N/P, MPI_INT, Step 2:
recvMatrix, N*N/P, MPI INT,
0, MPI_COMM WORLD);

Process O broadcasts vector to all
processes

// Broadcast vector to all processes
MPI Bcast(vector, N, MPI INT, 6, MPI COMM WORLD); Step 3:

Each process computes matrix
multiplication, the stores the
DBl i results in alocal vector

MPI_Gather(localResult, N/P, MPI_INT, result, N/P, MPI_INT, ©, MPI_COMM WORLD);

Process O gathers all local vectors,
. getting the final result + print
MPI Finalize(); resu |t

// compute multiplication .
mult(N/P, N, recvMatrix, vector, localResult); Step 4

L

if (myrank == 0)
{

printf("\nResult:\n"); Step 51/6:

printVector(N, result);

¥

Matrix multiplication: examplei2.c

// Scatter sendMatrix to all processes

MPI_Scatter(sendMatrix, N*N/P, MPI_INT, Summing integer elements
recvMatrix, N*N/P, MPI INT,
9, MPI COMM WORLD); between 2 processes

mpirun-n 4 examplel2.o0

// Broadcast vector to all processes
MPI Bcast(vector, N, MPI INT, 6, MPI COMM WORLD);

// compute multiplication
mult(N/P, N, recvMatrix, vector, localResult);

// Gather all results
MPI Gather(localResult, N/P, MPI INT, result, N/P, MPI INT, ©, MPI_COMM WORLD);

if (myrank == 0)

{
printf("\nResult:\n");
printVector(N, result);

}
MPI Finalize();

Global communication: MPI_Allgather

Before MPI_Allgather

Process 1 Process 2 Process 3 Process 4

et
| o]] [[

equivalent to

GATHER+BROADCAST

but of course more
efficient

After MPI_Allgather

Process 1 Process 2 Process 3 Process 4

MPI_Allgather

sendbuf: address of send buffer

sendcount: number of elements sent from each worker
recvbuf: address of receive buffer

recvcount: number of elements received from each worker

MPI_Allgather: example19.c

20int main(int argc, char* argv[])
214
22 MPI Init(&argc, &argv);

24 // Get my rank
25 int my rank;
26 MPI Comm rank(MPI_COMM WORLD, &my rank);

21

28 // Get number of processes and check that the buffer size can be splitted among all processes
29 int size;

30 MPI Comm size(MPI _COMM WORLD, &size);

31

32 int buffer to send[N]; // buffer used by all workers to gather data

33 int buffer_to recv[N*size]; // larger buffer used by the worker

34

35 // all workers initialize their own small vector

36 initializeArray(buffer to send, N);

37

38 // Master gathers data from all processes: he receives N*size elements (N from each worker)

39 MPI_Allgather(buffer to send, N, MPI INT, buffer to recv, N, MPI INT, MPI_COMM WORLD);

41 // Only master prints the gathered data

42 if (my rank == 0) printArray(buffer to recv, N*size);
43

44 MPI Finalize();

45

46 return EXIT_SUCCESS;

Global communication: MPI_Alltoall

:

P |Aao|AL]A2]| A3 PO A0 | BO | co | DO

0
a8 2 5 3 5 PN Y Y T
ALLTOALL
. BEEE = -, FEEE
P3 DO | D1 P3 A3 |B3|C3|D3

e
:

MPI_Alltoall

sendbuf: address of send buffer (significant only for root)
sendcount: number of elements to send to each process
recvbuf: address of receive buffer

recvcount: number of elements to receive from each process
root: rank of process master (who sends data to each others)

MPI_Alltoall: example20.c

20int main(int argc, char* argv[])
214
22 MPI Init(&argc, &argv);

24 // Get my rank
25 int my rank;
26 MPI_Comm_rank(MPI_COMM WORLD, &my rank);

27

28 // Get number of processes and check that the buffer size can be splitted among all processes
29 int size;

30 MPI_Comm_size(MPI_COMM WORLD, &size);

31

32 int buffer to send[N]; // buffer used by all workers to send data

33 int buffer to recv[N]; // buffer used by all workers to receive data
34

35 // all workers initialize their own small vector

36 initializeArray(buffer to send, N);

37

38 // all process wants to send only N/size elements from the others,

39 // all process wants to receive only N/size elements from the others

40 MPI Alltoall(buffer to send, N/size, MPI_INT, buffer to recv, N/size, MPI_INT, MPI_COMM WORLD);

42 // Only master prints the original data, then the received data
43 if (my rank == 0) {

44 printf("Original vector\n"); printArray(buffer _to send, N);
45 printf("Received vector\n"); |printArray(buffer to recv, N);
46 }

47

48 MPI Finalize();

49

50 return EXIT SUCCESS;

Global reduction: MPI_Reduce

Before MPI_Reduce

Process 1 Process 2 Process 3 Process 4

BN ENIEN

After MPI_Reduce

Process 1 Process 2 Process 3 Process 4

of L L]

MPI_Reduce

sendbuf: address of send buffer (significant only for root)
recvbuf: address of receive buffer

count: number of elements sent to each process

op: reduction operation (see later)

root: rank of process master (who sends data to each others)

MPI_Reduce: predefined operations

User-defined operation
can also be defined

Operation Value | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and
MPI_BAND Bitwise and
MPI_LOR Logical or

MPI_BOR Bitwise or
MPI_LXOR Logical exclusive or
MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum and location of maximum

MPI_MINLOC

Minimum and location of minimum

MPI_Reduce: example2i.c

|
20 int main(int argc, char* argv[])
22 MPI Init(&argc, &argv);

24 // Get my rank
25 int my rank;
26 MPI_Comm rank(MPI_COMM WORLD, &my rank);

2.

28 // Get number of processes and check that the buffer size can be splitted among all processes
29 int size;

30 MPI_Comm size(MPI_COMM WORLD, &size);

31

32 int buffer to send[N]; // buffer used by all workers to send data
33 int buffer to recv[N/sizel; // buffer retrieved by the master

34

35 // all workers initialize their own small vector

36 initializeArray(buffer to send, N);

37

38 // Process 0 receives data reduced in sun

39 MPI_Reduce(buffer to send, buffer to recv, N, MPI_INT, MPI_SUM, 0, MPI_COMM WORLD);

41 // Only master prints the original data, then the received data
42 if (my rank == 0) {

43 printf("Results\n"); printArray(buffer _to recv, N);

44

45

46 MPI Finalize();

47

48 return EXIT_SUCCESS;

Computing & in parallel (using MPI_Reduce): exampleil.c

e Theinterval[O, 1]is splitinto N
parts

e FEachpartisassignedtoa
process p.

e eachp.process works on its
own sub-interval
~ e process p,gathers all results
< and sum them up all together

Computing & in parallel (using MPI_Reduce): exampleii.c

void main (int argc, char *argv[])
{
MPI Status status;
int myrank, P, retVal;
intgq=0, r=0;
double result = 0.0;

MPI Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM WORLD, &myrank);
MPI_Comm_size(MPI_COMM WORLD, &P);

double h = 1.0/N;
int i = myrank+1;
double sum = 0.0;

while (i <= N)
{
sum = sum + (4*h)/(1+pow2(i*h));
i=14+P;
}
// Each process has stored in sum the value to reduce
MPI Reduce(&sum, &result, 1, MPI _DOUBLE, MPI SUM, 0, MPI_COMM WORLD);
if (myrank == 0) printf("%5.24f\ﬂ", result);

MPI Finalize();

Global reduction: MPI_Allreduce
Before MPI_Allreduce

Process | Process 2 Process 3 Process 4

After MPI_Allreduce

Process 1 Process 2 Process 3 Process 4

] (1] L] [

MPI_Allreduce

sendbuf: address of send buffer (significant only for root)
recvbuf: address of receive buffer

count: number of elements sent to each process

op: reduction operation

MPI_Allreduce: example22.c

20int main(int argc, char* argv[])
214
22 MPI_Init(&argc, &argv);

24 // Get my rank
25 int my rank;
26 MPI_Comm_rank(MPI_COMM WORLD, &my rank);

27

28 // Get number of processes and check that the buffer size can be splitted among all processes
29 int size;

30 MPI_Comm_size(MPI_COMM WORLD, &size);

31

32 int buffer to send[N]; // buffer used by all workers to send data
33 int buffer to recv[N/sizel; // buffer retrieved by the master

34

35 // all workers initialize their own small vector

36 initializeArray(buffer to send, N);

37

38 // Process 0 receives data reduced in sum

39 MPI_Allreduce(buffer to send, buffer to recv, N, MPI INT, MPI SUM, MPI_COMM WORLD);

41 // Only master prints the original data, then the received data
42 if (my rank == 1) {

43 printf("Results\n"); printArray(buffer to recv, N);

44

45

46 MPI Finalize();

47

48 return EXIT SUCCESS;

Global reduction: MPl_Reduce_scatter

Before MPI_Reduce_scatter
Process 1 Process 2 Process 3 Process 4

After MPI_Reduce_scatter
Process 1 Process 2 Process 3 Process 4

MPI_Reduce_scatter

e sendbuf: address of send buffer (significant only for root)
recvbuf: address of receive buffer
count: integer array specifying the number of elements in result
distributed to each process. Array must be identical on all calling
processes.

e op:reduction operation

MPI_Reduce_scatter: example23.c

20int main(int argc, char* argv[])
214
22 MPI Init(&argc, &argv);

24 // Get my rank
25 int my rank;
26 MPI Comm_rank(MPI COMM WORLD, &my rank);

27,

28 // Get number of processes and check that the buffer size can be splitted among all processes
29 int size;

30 MPI Comm size(MPI COMM WORLD, &size);

31

32 int buffer to send[N]; // buffer used by all workers to send data

33 int buffer to recv[N/sizel; // buffer retrieved by the master

34 int recvcount[size]; // number of element sent to others

35

36 for (int i = 0; 1 < size; ++i) recvcount[i] = N/size; // all process will receive N/size elements
37

38 // all workers initialize their own small vector

39 initializeArray(buffer to send, N);

40

41 // data are reduced and then scattered

42 MPI Reduce scatter(buffer to send, buffer to recv, recvcount, MPI INT, MPI SUM, MPI COMM WORLD);
44 // Only master prints the original data, then the received data

45 if (my _rank == 0) {
46 printf("Results\n"); printArray(buffer to recv, N/size);
}

49 MPI Finalize();

Global reduction: MPI_Scan

Before MPI_Scan

Process | Process 2 Process 3 Process 4

IR

After MPI_Scan

Process 1 Process 2 Process 3 Process 4

L[Lo]]

MPIl_Scan

sendbuf: address of send buffer (significant only for root)
recvbuf: address of receive buffer

count: number of elements in input buffer (integer).

op: reduction operation

comm: communicator

MPI_Scan: example24.c

|

20int main(int argc, char* argv[])
22 MPI Init(&argc, &argv);

24 // Get my rank

25 int my rank;
26 MPI_Comm_rank(MPI_COMM WORLD, &my rank);

29

28 int size;

29 MPI_Comm size(MPI_COMM WORLD, &size);

30

shl int buffer to send[N]; // buffer used by all workers to send data
32 int buffer to recv[N]; // buffer retrieved by all workers
33

34 // all workers initialize their own small vector

35 initializeArray(buffer to send, N);

36

37 // data is scanned

38 MPI_Scan(buffer to_send, buffer_to recv, N, MPI_INT, MPI_SUM, MPI_COMM WORLD);

40 // Worker 1| prints the original data, then the received data
41 if (my rank == 1) {

42 printf("Original\n"); printArray(buffer to send, N);
43 printf("Results\n"); printArray(buffer to recv, N);
VN

45

46 MPI Finalize();

47

48 return EXIT_SUCCESS;

Immediate collective functions

MPI _Ibcast

MPI _Iscatter
MPI_Igather
MPI_lallgather

MPI _lalltoall
MPI_lreduce

MPI lallreduce

MPI _Ireduce_scatter
MPI _Iscan

Don'’t forget to use MPI_Wait()

Building an MPI Cluster using
Google Cloud Platform

Before starting: creating a SSH key (using Linux)

e mkdir myGoogleKey
e cd myGoogleKey
e ssh-keygen-trsa-b 4096 -f./id_rsa
o The system will create the private key and ask for protecting it using a password. Leave empty for no password. If
provided, don't forget the password, it will be asked at login time
o Atthe end, two files are created: id_rsa (the private key) and id_rsa.pub (the public key)
o Keep safe both files as everybody could get access to your virtual instance

Before starting: creating a SSH key (using Win)

download PuttyGen from https://www.puttygen.com/

start the tool
generate a RSA key
save and keep safe public and private keys

Q PuTTY Key Generator
File Key Conversions Help

Key
No key.

Actions

Generate a public/private key pair
Load an existing private key file
Save the generated key

Parameters

Type of key to generate:
@ RSA ODsA

Number of bits in a generated key:

(OECDSA

Save public key

(O ED25513

Load

Save private key

(O 55H-1 (RSA)
2048

https://www.puttygen.com/

Building a Virtual Instance (used as template)

N
A A N::: is permanent
e Login https://console.cloud.google.com using P
your institutional email credentials Labels
e Select Compute Engine > Virtual Instances + Add label
e Create a new instance having the following Ragin, 2o
egion Is permanent Zone is permanem
ConﬂguraUOHZ us-central1 (lowa) v us-centrall-a -

o name: node1

Machine configuration

o region: us-centrall Mschinie failly
@) cpu: 2 General-purpose Compute-optimised =~ Memory-optimised
o memory: 8GB Machine types for common workloads, optimised for cost and flexibility
Series
E2 v

CPU platform selection based on availability

Machine type
e2-standard-2 (2 vCPU, 8 GB memory) -

vCPU Memory GPUs

V 2 8GB

https://console.cloud.google.com

Building a Virtual Instance (used as template)

e Create a new instance having the following Boot disk

configuration:
o 0OS:centos

Select an image or snapshot to create a boot disk; or attach an existing disk. Can't find what

o Version: 8 Publicimages Custom images @ Snapshots @ Existing disks
o Boot Disk: Standard ,
. Operating system
o Size: 50GB Cent0S X
Version
CentOS 8 v

x86_64 built on 20201014, supports Shielded VM features

Boot disk type Size (GB)

Standard persistent disk 5 50

Building a Virtual Instance (used as template)

Management Security Disks Networking Sole Tenancy

e Using a text editor, open the public key created
Shielded VM

before (id_rsa-PUb). COpy the content and paSte it Turn on all settings for the most secure configuration.
into the right field (Security Tab) Turn on Secure Boot
. v/ Turn on vTPM
e Take alook at the username assigned to the key N Toimorndintcrity Maniong
(which is the same username who created the SSH Keys
key) These keys allow access only to this instance, unlike project-wide SSH keys Learn more
e Let's select the Create button to build the virtual Blocieprojectwide SSH heys

. When checked, project-wide SSH keys cannot access this instance Learn more
Instance.

e The Vlis started up straightaway.

UXt8r8dGQ6Mq/eo3a3BHFFXyXyhStHvDT+2C3Wp7W4
+cYbggDVFRbv8184C87sGIOL t IOWrXHIFY5VoqZuVP
w7AkksWOICB1/PVXKIALtBlgs1ASNQot5TOGvIXnlL
cuspide 5Qv81YAYOIVFSPYNCN6E1SUGI txHA3MITnXKy50ahh | 3¢
HZKUut1LmVsXF5s0xMguVDKUyoxkt2y+L4A4muDjWg
gsv1/HI3uwZwu@QcfEa0jp5xJeZ/VUhiXLcIxe5/PZ
d/60aP0Q== cuspide@localhost.localdomain|

=+ Add item

Getting an access to the virtual instance

e Using the Dashboard, let's take a look to the virtual instance. The green button means it is running
e The Virtual Instance is assigned to an external IP. Take note of that and keep in mind that it is going to stay
the same as long as the virtual instance is left running. After that, the address might change

VM instances » G +2 MANAGE ACCESS SHOW INFO PANEL

= Filter VM instance Columns ~

Name ~ Zone Recommendation In use by Internal IP External IP Connect

& nodel us-centrall-a 10.128.0.4 (nic0) 104.197.141.109 SSH ~

Getting an access to the virtual instance

e Using your shell, run the following command:
o ssh-lcuspide-i./id_rsa 104.197.141.109
e Where:
o cuspide: is the username showed in the security section
o id_rsa: is the name of the private key created at the beginning
o 104.197.141.109: the is virtual instance IP address showed by the dashbord

e If everything went well, you are inside your remote virtual instance. You can see that the prompt is different
as it is something similar to cuspide@node1

Download and install OpenMPI

sudo su

yum install wget

yum install perl

yum install gcc

yum install gcc-c++

mkdir /usr/local/openMPI
cd ~

mkdir openMPI

wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.1.tar.gz
o Please, verify before downloading if a new release is available
e tar-xvzf openmpi-4.1.1.tar.gz

Download and install OpenMPI

cd openmpi-4.1.1

mkdir build

../configure —prefix=/usr/local/openMPI
make all install

exit (getting back to the non-admin user)

vi ~/.bashrc
o export PATH=SPATH:/usr/local/openMPI/bin

Copy the key pair

Copy on each virtual instance the key pair you created at the beginning:
scp -i id_rsa id_rsa* cuspide@104.197.141.109:/home/cuspide/.ssh

Be careful: the command should be run for each virtual instance changing properly username, IP address and
home directory

The first program

#include
#include
#include

const int MAX STRING =

int main(void)

{
char greeting[MAX STRING];
int comm sz; /* Numero di process
int my rank; /* Rango dei proc
int q = 0;

MPI Init(! » NULL);
MPI_Comm_size(MPI_COMM WORLD, &comm sz);
MPI Comm rank(MPI COMM WORLD, &my rank);

if (my rank != 0) {
sprintf(greeting, sreet
printf(i %d\n", my rank);
MPI Send(greeting, strlen(greeting)+1, MPI CHAR, ©, ©,MPI COMM WORLD) ;
printf(i %d\n", my rank);
} else {
printf (" 3 1 %d %d!\n", my rank, comm sz);
for (g = 1; q < comm sz; g++) {
MPI Recv(greeting, MAX STRING, MPI CHAR, q, ©, MPI COMM WORLD, MPI STATUS IGNORE);
printf("E %s\n", greeting);

%d of %d!", my rank, comm sz);

}
}
MPI Finalize();
return 0;

Compiling and running the first application

e vihostfile
@ localhost slots=4
e mpicc01.c-001.0
e mpirun --hostfile hostfile-np 4 01.0

[cuspide@nodel srcOpenMPI]$ mpirun --hostfile hostfile -np 4 01l.0
A - Greetings from process 0 of 4!

B - 0- Greetings from process 1 of 4!

B - 0- Greetings from process 2 of 4!

B - 0- Greetings from process 3 of 4!

Prima dell'invio: 1

Dopo l'invio: 1

Prima dell'invio: 2

Dopo l'invio: 2

Prima dell'invio: 3

Dopo l'invio: 3
[cuspide@nodel srcopenvPI]$ [

Create the cluster

Stop the running virtual instance

Select and Open the Virtual Instance
Click on “Create Machine Image” button
Set “template” as name

Create the image

Create a machine image

Name *

[template

Name is permanent

Description

Source VM instance *
nodel

Location
@® Multi-regional
(O Regional

Select location
us (United States)

Create the cluster

e From Compute Engine > Machine images, select
the template called as “template” and select
“Create instance”

e Set the new instance name as node2

e Do the same for node2, node3 and node4

{é} Compute Engine

Virtual machines A
B VMinstances
[l Instance templates
B Sole-tenant nodes
E Machine images
A TPUs
&! Migrate for Compute Engine
Committed use discounts
Storage A
B Disks
Snapshots
=] Images
Instance groups A
Instance groups

5]

Health checks

Machine imag... A CREATE MACHINE IMAGE C'REFRESH
= Filter table (7] m
O [] Name 4 Source instance Machinetype Actions
O (] template node1 e2-standard-z

<(B) <>

Create the cluster

Start all nodes and note that each Virtual Instance has got its own external IP as well as the Internal IP. This last
one will be used to connect the virtual instance to each others

= Filter VM instance Columns ~
= Name ~ Zone Recommendation In use by Internal IP External IP Connect

v & nodel us-centrall-a 10.128.0.4 (nic0) 104.197.141.109 SSH ~ :
v & node2 us-centrall-a 10.128.0.5 (nic0) 34.123.43.212 SSH ~ :
v & node3 us-centrall-a 10.128.0.6 (nic0) 35.225.5.66 SSH ~ :

v & noded us-centrall-a 10.128.0.7 (nic0) 35.224.178.150 SSH ~

Try the cluster interconnection

e Get an access to the first node (node1):
o ssh-lcuspide-i./id_rsa 104.197.141.109
e Tryto connect using ssh to all other virtual instances using private network:
o ssh10.128.0.4
o ssh10.128.0.5
o ssh10.128.0.6
o ssh10.128.0.7
e Modify the hostfile
o 10.128.0.4 slots=2
o 10.128.0.5 slots=2
o 10.128.0.6 slots=2
o 10.128.0.7 slots=2
e Run the application again

o mpirun --hostfile hostfile -np 8 01.0

