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Parallel computing
an overview



Serial Computing

Many techniques for 

speeding up the execution:

● pipelining

● loop unrolling

● branch prediction

● speculation

● register renaming

● dynamic scheduling

● out-of-order completion

● and so on



Parallel Computing

Control and
Coordination



What do we need for parallel computing?

A single computer with multiple processors/cores

An arbitrary number of such computers connected by a network 

(cluster)



A single multicore system

● IBM BG/Q Compute Chip

● 18 cores

● 16 L2 cache units



A cluster of stand-alone computers



Parallel Computing in daily life



Parallel Computing Memory Architectures

Parallel Computing

Shared Memory
Hybrid 

Distributed-Shared 
Memory

Distributed Memory

Not Uniform Memory 
Access (NUMA)

Uniform Memory 
Access (UMA)



Shared Memory: Uniform Memory Access

● CPUs are identical to each others

● Memory is shared among all 

processes

● A single global space address

● Changes are seen by all processes

● Equal access times to memory

● Each CPU has got its own cache
○ Cache-coherency provided at 

hardware-level



Shared Memory: Not-Uniform Memory Access

● Memory is shared among CPUs

● A single global space address

● Memory access time is not 

uniform anymore
○ faster for accessing into local 

memory

○ slower for accessing into other 

cpu memories



Shared Memory: trade-offs

Lack of scalability between memory 

and CPUs: adding more CPUs can 

geometrically increases traffic on 

the shared memory-CPU path

Programmer responsibility for 

synchronization constructs that 

ensure "correct" access of global 

memory

Global address space provides a 

user-friendly programming

Data sharing between tasks is both 

fast and uniform



Distributed Memory

● Each CPU has its own local memory

● No Global Addressing

● Data changes don’t have any effect on the memory of other CPUs

● No Cache Coherence

● CPUs communicate through network



Distributed Memory: trade-offs

Programmer is responsible for 

data exchange

Getting data stored in remote 

node is slower than local data

The system is scalable (increasing 

the number of CPUs, the size of 

memory increases too)

CPUs can fastly access to their own 

memory



Hybrid Distributed-Shared Memory

The largest and fastest computers in the world today employ both shared 

and distributed memory architectures.

● CPUs

● GPUs

● Internode communication

● Intranode communication



Hybrid Distributed-Shared Memory: trade-offs

All disadvantages of distributed 

and shared memory

All advantages of distributed and 

shared memory



Speed Up

Linear SpeedUp: Ideally, doubling the number of CPUS the execution time is 

halved (Speedup = N)

In reality, this happens hardly ever, because some software cannot be 

completely parallelized



Amdalh’s law

This law gives the theoretical speedup a parallel application can achieve

Be:

● S the fraction of the code that cannot be parallelized (serial execution) 

● P the fraction of the code that can be parallelized

● S + P = 1



Amdalh’s law

Observations:

● From the first limit: the fraction of serial code is a bound of the 

scalability

● From the second limit: if there wasn’t any serial code, the speed up is 

equal to N (linear speed)



Amdalh’s law: an example

If Serial Code is 10% (S = 0.10 and P = 0.90), the highest speedup we can get 

is 10, regardless the number of CPU used



Amdalh’s law: a graphical explanation

p = fraction of the code which can be 

executed in parallel mode

ɑ = fraction of the code which can be 

executed in serial mode

n = core number

s = SpeedUp



Limit of the Parallel Programming

Speedup is strongly affected by the fraction of serial code



Limit of the Parallel Programming

Speedup is strongly affected by the fraction of serial code



Superlinear speed

Some application might achieve performance even better than the linear 

speed, that is S > N

This might happen for several reasons, for example due to the CPU cache



Scalability

Quite similar to the SpeedUp but instead of considering the execution time of the 
serial implementation, it takes the execution time of the parallel implementation 
with a parallel degree equal to 1



Scalability

● Strong Scaling (Amdahl)
○ The total problem size stays fixed as more processors are added.

○ Goal is to run the same problem size faster

○ Perfect scaling means problem is solved in 1/P time (compared to serial)

● Weak Scaling (Gustafson)
○ The problem size per processor stays fixed as more processors are added. 

○ The total problem size is proportional to the number of processors used

○ Goal is to run larger problem in same amount of time

○ Perfect scaling means problem P runs in same time as single processor run



Limit of scalability

● Load balancing

● Synchronization

● Communication

● Overhead 



Parallel Programming Models

There are several parallel programming models in common use

● Shared Memory (without threads, using semaphores or locks to 

prevent race conditions and deadlock)

● Threads (pThread, OpenMP)

● Distributed Memory / Message Passing (MPI)
● Data Parallel

● Hybrid (MPI + OpenMP/pThread)

● Single Program Multiple Data (SPMD)

● Multiple Program Multiple Data (MPMD)



Non-parallelizable applications

Not all applications can be parallelized.

Let’s consider the Fibonacci sequence: {1, 1, 2, 3, 5, 8, 13, 21, …}

This problem is not parallelizable because each f(n) can be computed only 

when f(n-1) and f(n-2) have been computed



Non-parallelizable applications

Using 4 different CPUs is useless because each 

CPU needs to wait until the required results are 

available.

So, even using N cores, the time to complete the 

parallel execution is the same as the serial 

execution

Data dependency problem



Parallelizable applications: decomposition

One of the first steps in designing a parallel program is to break the problem 

into discrete chunks of work that can be distributed to multiple tasks:

● Domain Decomposition

● Functional Decomposition



Domain Decomposition



Functional Decomposition



A example of Domain Decomposition 

Suppose we want to compute the Geometric Series

Suppose that we want to parallelize this computation using P = 4 different 

cores and N is a multiple of P. Then, the original formula can be rewritten 

into



A example of Domain Decomposition 

G
16

 = 21+22+23+24+25+26+27+28+29+210+211+212+213+214+215+216

Processor 1 21+22+23+24

Processor 2 25+26+27+28

Processor 3 29+210+211+212

Processor 4 213+214+215+216



A example of Domain Decomposition 

Each S
i
 can be assigned to each core.

In the last step, the outermost sum is 

computed.

Serial computation time: T

Parallel computation time: T/P



Parallel Computing Tradeoffs 

If domain or problem can be decomposed, using P 

concurrent processes we can:

1. Reduce the execution time
2. Reduce the amount of memory required by each 

process

On the opposite

1. Communication between processes is needed
a. In the Geometric Series, each process communicates 

the result to process #2

2. Synchronization between processes  is required 
a. process A cannot send a message to process B if B is 

not waiting for the message sent by A

Synchronization and 
Communication



MPI: an introduction



What is MPI: Message Passing Interface

● It is not:
○ a compiler

○ a library

○ a framework

○ a programming language

● It’s a specification, a standard, an interface, not an implementation
○ MPI Forum: https://www.mpi-forum.org/

○ Version 4.0 released on June, the 9th 2021

○ The complete specification can be found at: 

■ https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

■ 1139 pages

https://www.mpi-forum.org/
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf


What is MPI

● There are many implementation
○ OpenMPI (https://www.open-mpi.org/) - Open Source
○ IntelMPI (https://www.intel.com/)

○ MVAPICH (http://mvapich.cse.ohio-state.edu/) 

○ Rookie (https://www.rookiehpc.com/)

○ …

● Each implementation has its own version
○ OpenMPI 4.1.1 implements the specification 4.0

● There are many implementation for different programming language
○ C/C++
○ Fortran

○ Java

https://www.open-mpi.org/


How to Install OpenMPI

on Centos8

● yum install gcc

● yum install gcc-c++

● yum install make

● cd ~/Download

● wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.1.tar.gz

● tar -xzvf openmpi-4.1.1.tar.gz

● cd openmpi-4.1.1/

● ./configure --prefix=/usr/local/openmpi-4.1.1

● make -j 4 all

● make install

● vi ~/.bashrc

○ MPI_HOME=/usr/local/openmpi-4.1.1

○ PATH=$MPI_HOME/bin:$HOME



MPI call format in C/C++

All functions in MPI have a similar format:

err = MPI_Xxxxxx(parameters, …)

● prefix MPI_

● only first letter uppercase

● all functions return an integer error code

● parameters can be either “in” or “out”



Where to get help

● man pages
○ i.e. man MPI_Init

● https://www.open-mpi.org/doc/current/

● https://www.rookiehpc.com/mpi/docs/

https://www.open-mpi.org/doc/current/
https://www.rookiehpc.com/mpi/docs/mpi_scatter.php


Communication Environment

MPI_Init

● it initializes the communication environment

● all processes need to use it before any other

● it is called only one time per process

MPI_Finalize

● it finalizes the communication environment

● it is not possible to use any other MPI function after that



MPI_Init and MPI_Finalizes

parameters argc and argv are those that are taken by main method

void main (int argc, char *argv[]) {
…
}



Communicator

● A communicator is a collection 

of processes sharing attributes

● Each process is identified inside 

its communicator (rank)

● Two processes can 

communicate only if they 

belong to the same 

communicator

● MPI_COMM_WORLD is the 

default communicator



Communicator size

● It is the number of the 

processes belonging to the same 

communicator

● MPI_Comm_size: function for 

getting the size of a 

communicator

● MPI_Comm_rank: function for 

getting the ID of a process

● convention: process 0 = master



MPI_Comm_size and MPI_Comm_rank

● comm: the communication we want to know

● size: pointer to an integer variable (it will contain the size of the Comm)

● rank: pointer to an integer variable (it will contain the rank of the 

process) 



The first program: example01.c

#include <stdio.h>
#include <mpi.h>
void main (int argc, char *argv[]) {

int myrank, size;
/* 1. Initialize MPI */
MPI_Init(&argc, &argv);
/* 2. Get my rank */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
/* 3. Get the total number of processes */
MPI_Comm_size(MPI_COMM_WORLD, &size);
/* 4. Print myrank and size */
printf("Process %d of %d \n", myrank, size);
/* 5. Terminate MPI */
MPI_Finalize();

}

There is no reference to the number 
of processes to be executed



Compiling and running the program

> mpicc example01.c -o example01

> mpirun -n 4 example01

Process 0 of 4 
Process 2 of 4 
Process 1 of 4 
Process 3 of 4 

all 4 processes are executed on localhost



Your turn

● run the program using a different number of processes

● why indexes in the output do appear out of order? 

● different program executions will give the output in the same order?



Keep in mind

The correct execution of the program must not depend on the process 
number

This means that your code has to work properly regardless the number of 
processes used



The message structure

Processes communicate using messages

A message is made by:

● Envelope
○ sender/receiver: the ID of the sender/receiver process

○ communicator: the ID of the group where processes belong to 

○ tag: the ID of the message

● Body
○ buffer: the message to send / receive

○ datatype: the type of the message (see next)

○ count: the number of occurrences of the datatype

All sender and 
receiving functions 
manage all these 
parameters



MPI_Datatype

Complex datatype (for example structured data) can be defined as well.



Different types of communications

Processes can communicate using:

1. Point to Point functions

2. Collective functions



MPI: point-to-point functions



Point-to-point functions

Communication mode Blocking Routines Non-Blocking Routines

Synchronous MPI_Ssend / MPI_Recv MPI_Issend / MPI_Recv

Buffered MPI_Bsend / MPI_Recv MPI_Ibsend / MPI_Recv

Ready MPI_Rsend / MPI_Recv MPI_Irsend / MPI_Recv

Standard MPI_Send / MPI_Recv MPI_Isend / MPI_Irecv



Blocking Synchronous Send (MPI_Ssend)

Ready-to-send 
Message

Ready-to-receive 
Message

MPI_Recv can either 
be invoked before or 
after MPI_Ssend



BE CAREFUL: 
programmer is responsible for 
managing user-supplied buffer

Blocking Buffered Send (MPI_Bsend)

longer wait for the receiver 
because of the system 
overhead (due to the copy of 
the message from the buffer)

MPI_Recv can either 
be invoked before or 
after MPI_Ssend



Blocking Ready Send (MPI_Rsend)

Ready-To-Send message is 
dropped, but receiver MUST 
invoke MPI_Recv BEFORE 
MPI_Rsend is invoked



Standard Send (MPI_Send) [eager protocol]

Different behaviour for 
small and large messages 
for taking advantages of 
buffered implementation 



Standard Send (MPI_Send) [rendezvous protocol]

Different behaviour for 
small and large messages 
for taking advantages of 
synchronous 
implementation 



How to know the threshold?

ompi_info --all | grep btl_tcp_eager_limit

ompi_info --all | grep btl_sm_eager_limit

tcp: communications happen through network (internode 
communications)

sm: communications happen through shared memory 
(internode communications)



Choosing the right communication mode

Advantages Disadvantages

Synchronous Send/Recv order is not critical;
No extra buffer space;

Can incur synchronous overhead;
Handshake required (ready-messages);

Ready Lowest total overhead
No extra buffer space;
No handshake

Recv must precede Send;

Buffered Decouples Send from Recv 
(message is buffered on sender side)
No sync overhead on Sender;
Programmer must control buffer;
Send/Recv order is not critical;

System overhead due to the copy of the buffer

Standard Good for many cases Protocol is determined by MPI implementation



Deadlock

Using blocking functions might incur in 

deadlock

This means that both functions stop 

program execution until the message is not 

received/sent by the counterpart.

For example: if P
1

 invokes MPI_Send for 

sending a message to P
2

, the execution of P
1

 

is blocked until P
2

 does not invoke the 

corresponding MPI_Recv



Non-Blocking functions

For each blocking function (synchronized, buffered, ready and standard) 

there is a corresponding non-blocking function with a similar behaviour.

The only difference is that sending a receiving functions never block the 

task execution.

But we need to use MPI_Wait function.

Let’s describe only the MPI_Isend and MPI_Irecv functions (non-blocking 

standard functions)



Non-Blocking Standard Sender (MPI_Isend)



Non-Blocking Standard Sender (MPI_Isend)



MPI: point-to-point functions
Examples



MPI_Send

● buf: Initial address of send buffer

● count: Number of elements send

● dtype: Datatype of each send buffer element

● dest: Rank of destination

● tag: Message tag

● comm: Communicator

message

envelope



MPI_Recv

● buf: Initial address of receive buffer

● count: Maximum number of elements to receive

● dtype: Datatype of each receive buffer entry

● src: Rank of source

● tag: Message tag

● comm: communicator

● status: Status object (information about the received message)

message

envelope



Sending and receiving data: example02.c

A single integer is sent 
between 2 processes



Some considerations

● The receiver can get the message if the envelope specified by the 

receiver is exactly the same as the envelope specified by sender
○ REMIND: envelop = source /destination + communicator + tag

● MPI_Send and MPI_Recv are blocking
○ Sender waits until receiver gets the message

○ Receiver waits until sender sends the message



Your turn

a. Can the application work even using a different process number?

b. What happens if I run the code with -n 4? Why?

c. Can we avoid blocking application execution?
a. solution: else if (myrank == 1)

d. What happens if I run the code replacing the tag on the receiver side to 

554? Why?

e. Try to send a char instead of a integer

f. Try to send an array of 10 integers (see example03)



Sending and receiving data: example03.c

A vector of integers is sent 
between 2 processes



Your turn

a. Instead of sending a vector of 10 integers in one shot, let’s send the 

vector in ten steps (one integer per send). Here again, only two 

processes involved in the communication



Switching protocols: example03.1.c

Switch from eager to 
rendezvous protocol

An array of integers is sent 
between 2 processes

change this variable from 
10 to 1024



Summing up integers: example04.c

Summing integer elements  
between 2 processes

mpirun -n 2 example04.o



Good to know

● All the former examples have been working only using two processes

● For all of them, using more processes never work (the completion time 

is always the same)

● The following examples will use several processes
○ No assumption will be done on the number of processes (the parallel 

applications will work regardless the process number)



Summing up integers: example05.c

Suppose we have the following vector of 13 integers and we want to sum up 

all the elements using 4 different processes

4 7 8 6 4 6 7 3 10 2 3 8 1

0 1 2 3

N  = 13
P = 4

Q =  N/P = 3
R = N%P = 1

from (RANK*Q) to ((RANK+1)*Q - 1)

from 
N-R to 

N-1



Summing up integers: example05.c

Summing integer elements  
between n processes

mpirun -n 4 example04.o

the vector is sent to all slaves

master receives slave’s computation

master computes the vector’s tailmaster computes the vector’s head

slave receives vector from master
slave computes its own data

sum is sent to master



Observation

● Parallel execution among 4 processes

● Slave processes compute sum operation using only 3 integers

● Master instead makes more work (because of the vector’s tail)

● The execution ends when all processes complete their own execution
○ the slower processes slows down the application execution

○ balancing problem

● The whole vector is sent to all slave processes (not just the data each 

slave should work on)
○ communication time problem

How can we send to the slave processes only the data they really need? 



Summing up integers: example06.c

Summing integer elements  
between N processes but 
reducing the total amount of 
data sent

Only a small section of the vector is sent

The whole (little) vector is computed



Your turn

● Can the code on example05 and example06 be executed with 3 parallel 

process without any changes? And with 100?

● In example05 and example06, initialization is only made by master (in 

serial way). Is there a way to parallelize initialization process?

● Think about a method to reduce the long-tail effect on the master



Parallel Sort: overview



Parallel Sort (with merging): example07.c 

Only a small section of the vector is sent

master orders its own subvector

master receives ordered vectors from slaves

master merges all subvectors



Parallel Sort (with merging): example07.c 

slave receives a small vector

sending back sorted vector



Computing 𝛑 in parallel: overview

We know that in general if f(x) is a integrable function:

To compute 𝛑

Using a very enough large N



Computing 𝛑 in parallel: overview

● The interval [0, 1] is split into N 

parts

● Each part is assigned to a 

process pi

● each pi process works on its 

own sub-interval

● process p0 gathers all results 

and sum them up all together



Computing 𝛑 in parallel: example08.c



Embarrassingly parallelism

An embarrassingly parallel program is one where little or no effort is needed 

to separate the problem into a number of parallel tasks.

This is often the case where there is little or no dependency or need for 

communication between those parallel tasks, or for results between them

Computing the PI is an embarrassingly parallel problem



Your turn: communication ring

● process 0 reads an integer from 

standard standard input

● process 0 sends the integer to 

process 1

● process 1 receives the integer, 

decrease it and sends forward to 

process 2

● the cycle goes on until the last 

process gets the integer. 

● The last process sends back the 

integer to 0, that displays the number



MPI_Ssend

● buf: initial buffer

● count: number of elements in send buffer

● datatype: datatype of each send buffer element

● dest: rank of destination

● tag: message tag

● comm: communicator

int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype, 
    int dest, int tag, MPI_Comm comm
)



MPI_Ssend: example13.c



MPI_Bsend

● buf: initial buffer

● count: number of elements in send buffer

● datatype: datatype of each send buffer element

● dest: rank of destination

● tag: message tag

● comm: communicator

int MPI_Bsend(const void *buf, int count, MPI_Datatype datatype, 
    int dest, int tag, MPI_Comm comm
)

Before using BSend, the buffer needs to 
be attached



Attaching and detaching

MPI_BSEND_OVERHEAD
represents the size, in bytes, of the memory overhead generated everytime 
an MPI_Bsend or MPI_Ibsend is issued.



MPI_Bsend: example14.c

computes the size of the buffer considering 
the overhead introduced by BSEND



MPI_Sendrecv

● sbuf: initial buffer for sender

● scount: number of elements in 

send buffer

● s_dtype: datatype of each buffer 

element sent

● dest: rank of destination

● stag: message tag for sending

● comm: communicator

● dbuf:initial buffer for receiver

● dcount: number of elements in 

receiver buffer

● d_type: datatype of each buffer 

element received

● src: the sender’s rank

● dtag: receive tag

● status



Circular Shift

Let’s suppose now that, differently 

from the previous one, we want 

that all processes send a message 

to the neighbor at the same time 

(all of the in T
1

)

Using SEND and RECEIVE 

functions arise a Deadlock 

(because there is correspondence 

between sending and receiving, 

but using MPI_Sendrecv we drop 

the problem



Circular Shift: example09.c



MPI_Isend

● similar to MPI_Send

● request: pointer to be used in MPI_Wait

int MPI_Isend(void *buf, int count, 
   MPI_Datatype datatype, int dest, int tag,
   MPI_Comm comm, MPI_Request *request)



MPI_Issend

● similar to MPI_Ssend

● request: pointer to be used in MPI_Wait

int MPI_Issend(void *buf, int count, 
   MPI_Datatype datatype, int dest, int tag,
   MPI_Comm comm, MPI_Request *request)



MPI_Ibsend

● similar to MPI_Bsend

● request: pointer to be used in MPI_Wait

int MPI_Ibsend(void *buf, int count, 
   MPI_Datatype datatype, int dest, int tag,
   MPI_Comm comm, MPI_Request *request)



MPI_Irsend

● similar to MPI_Rsend

● request: pointer to be used in MPI_Wait

int MPI_Irsend(void *buf, int count, 
   MPI_Datatype datatype, int dest, int tag,
   MPI_Comm comm, MPI_Request *request)



MPI_Irecv

● similar to MPI_Recv

● request: pointer to be used in MPI_Wait

int MPI_Irecv(void *buf, int count, 
   MPI_Datatype datatype, int source, int tag,
   MPI_Comm comm, MPI_Request *request)



MPI_Wait

● request: pointer used in MPI_I*send

int MPI_Wait(MPI_Request *request, MPI_Status *status)



Using non-blocking functions: example10.c



Exercises



Exercises

● Ping Pong: write a program in which two processes repeatedly pass a 

message back and forth

● Rotating: each process stores it own rank, then sends this value to the 

process on its right. The process continues passing on the values they 

receive until they get their own rank back. Each process should finish 

by printing out the sum of the values.



Exercises

● Ordering: consider a 2-dimensional matrix. Each row is ordered

4 0 3

5 2 7

2 3 1

0 3 4

2 5 7

1 2 3



Exercises

● Simple Array Assignment: The master task initiates numtasks-1 

number of worker tasks and then distributes an equal portion of the 

array to each worker. Each worker receives its portion of the array and 

performs a simple value assignment to each of its elements. The value 

assigned to each element is simply that element's index in the array 

plus 1. Each worker then sends its portion of the array back to the 

master. As the master receives a portion of the array from each worker, 

selected elements are displayed.



Exercises

● Matrix Multiplication: This example is a simple matrix multiplication 

program, i.e. AxB=C. Matrix A is copied to every processor. Matrix B is 

divided into blocks and distributed among processors. The data is 

distributed among the workers who perform the actual multiplication 

in smaller blocks and send back their results to the master.



MPI: collective functions



Collective functions

When communication involves all processes, instead of using point-to-point 

functions. Three classes:

● Synchronization
○ MPI_Barrier

● Global Communication (data movement)
○ MPI_Bcast, MPI_Scatter, MPI_Gather, MPI_Allgather, MPI_Alltoall

● Global Reduction (collective computation)
○ MPI_Reduce, MPI_Allreduce, MPI_Reduce_scatter, MPI_Scan



Synchronization: MPI_Barrier

● Blocks until all processes in the group 

of the same communicator

● Used for synchronization



MPI_Barrier

int MPI_Barrier(MPI_Comm comm)



MPI_Barrier: example15.c



Global communication: MPI_Bcast

The same data is sent from 

the master process to the 

other processes



MPI_Bcast

● buffer: point to the buffer 

● count: number of entries in the buffer

● root: rank of process master (who sends data to each others)

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype,
            int root, MPI_Comm comm)



MPI_Bcast: example16.c



Global communication: MPI_Scatter

The vector of data is split in N parts (where 

N is the number of processes). Each part is 

sent to each process



MPI_Scatter

● sendbuf: address of send buffer (significant only for root)

● sendcount: number of elements sent to each process 

● recvbuf: address of receive buffer

● recvcount: number of elements received

● root: rank of process master (who sends data to each others)

int MPI_Scatter(
    void *sendbuf, int sendcount, MPI_Datatype sendtype,
    void *recvbuf, int recvcount, MPI_Datatype recvtype, 
    int root, MPI_Comm comm
)



MPI_Scatter: example17.c



Global communication: MPI_Gather



MPI_Gather

● sendbuf: address of send buffer

● sendcount: number of elements sent from each process 

● recvbuf: address of receive buffer

● recvcount: number of elements received

● root: rank of process master (who receives data to each others)

int MPI_Gather(
    void *sendbuf, int sendcount, MPI_Datatype sendtype,
    void *recvbuf, int recvcount, MPI_Datatype recvtype, 
    int root, MPI_Comm comm
)



MPI_Gather: example18.c



Putting gather, scatter and broadcast together

Matrix Vector Result

The original matrix is split in P parts, where P is the number of 

processes. Each process computes multiplication of the submatrix and 

the vector. Then the result is stores in a subvector. All subvectors are 

concat together



Matrix multiplication: example12.c

For simplicity, we suppose that N is a multiple of P

1. Process 0 initializes matrix and vector, then print both

2. Process 0 scatters matrix to all processes

3. Process 0 broadcasts vectors to all processes

4. Each process computes matrix multiplication, the stores the results in a 

local vector

5. Process 0 gathers all local vectors, getting the final result

6. Process 0 visualizes the final result



Matrix multiplication: example12.c

Step 1: 
Process 0 initializes matrix and 

vector, then prints both



Matrix multiplication: example12.c

Step 2: 
Process 0 scatters matrix to all 

processes

Step 3: Process 0 broadcasts vector to all 

processes

Step 4: 
Each process computes matrix 

multiplication, the stores the 

results in a local vector

Step 5 / 6: 
Process 0 gathers all local vectors, 

getting the final result + print 

result



Matrix multiplication: example12.c

Summing integer elements  
between 2 processes

mpirun -n 4 example12.o



Global communication: MPI_Allgather

This operation is 

equivalent to 

GATHER+BROADCAST 

but of course more 

efficient



MPI_Allgather

● sendbuf: address of send buffer

● sendcount: number of elements sent from each worker 

● recvbuf: address of receive buffer

● recvcount: number of elements received from each worker

int MPI_Allgather(
    void *sendbuf, int sendcount, MPI_Datatype sendtype,
    void *recvbuf, int recvcount, MPI_Datatype recvtype, 
    MPI_Comm comm
)



MPI_Allgather: example19.c



Global communication: MPI_Alltoall



MPI_Alltoall

● sendbuf: address of send buffer (significant only for root)

● sendcount: number of elements to send to each process 

● recvbuf: address of receive buffer

● recvcount: number of elements to receive from each process

● root: rank of process master (who sends data to each others)

int MPI_Alltoall(
    void *sendbuf, int sendcount, MPI_Datatype sendtype,
    void *recvbuf, int recvcount, MPI_Datatype recvtype, 
    MPI_Comm comm
)



MPI_Alltoall: example20.c



Global reduction: MPI_Reduce



MPI_Reduce

● sendbuf: address of send buffer (significant only for root)

● recvbuf: address of receive buffer

● count: number of elements sent to each process 

● op: reduction operation (see later)

● root: rank of process master (who sends data to each others)

int MPI_Reduce(
    void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype,
    MPI_Op op, int root, MPI_Comm comm 
)



MPI_Reduce: predefined operations

User-defined operation 

can also be defined



MPI_Reduce: example21.c



Computing 𝛑 in parallel (using MPI_Reduce): example11.c

● The interval [0, 1] is split into N 

parts

● Each part is assigned to a 

process pi

● each pi process works on its 

own sub-interval

● process p0 gathers all results 

and sum them up all together



Computing 𝛑 in parallel (using MPI_Reduce): example11.c



Global reduction: MPI_Allreduce



MPI_Allreduce

● sendbuf: address of send buffer (significant only for root)

● recvbuf: address of receive buffer

● count: number of elements sent to each process 

● op: reduction operation

int MPI_Allreduce(
    void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype,
    MPI_Op op, MPI_Comm comm 
)



MPI_Allreduce: example22.c



Global reduction: MPI_Reduce_scatter



MPI_Reduce_scatter

● sendbuf: address of send buffer (significant only for root)

● recvbuf: address of receive buffer

● count: integer array specifying the number of elements in result 

distributed to each process. Array must be identical on all calling 

processes.

● op: reduction operation

int MPI_Reduce_scatter(
    void *sendbuf, void *recvbuf, int *count, MPI_Datatype datatype,
    MPI_Op op, MPI_Comm comm 
)



MPI_Reduce_scatter: example23.c



Global reduction: MPI_Scan



MPI_Scan

● sendbuf: address of send buffer (significant only for root)

● recvbuf: address of receive buffer

● count: number of elements in input buffer (integer).

● op: reduction operation

● comm: communicator

int MPI_Scan(
    void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype,
    MPI_Op op, MPI_Comm comm 
)



MPI_Scan: example24.c



Immediate collective functions

● MPI_Ibcast

● MPI_Iscatter

● MPI_Igather

● MPI_Iallgather

● MPI_Ialltoall

● MPI_Ireduce

● MPI_Iallreduce

● MPI_Ireduce_scatter

● MPI_Iscan

Don’t forget to use MPI_Wait()



Building an MPI Cluster using 
Google Cloud Platform



Before starting: creating a SSH key (using Linux)

● mkdir myGoogleKey
● cd myGoogleKey
● ssh-keygen -t rsa -b 4096 -f ./id_rsa

○ The system will create the private key and ask for protecting it using a password. Leave empty for no password. If 
provided, don’t forget the password, it will be asked at login time

○ At the end, two files are created: id_rsa (the private key) and id_rsa.pub (the public key)
○ Keep safe both files as everybody could get access to your virtual instance



Before starting: creating a SSH key (using Win)

● download PuttyGen from https://www.puttygen.com/
● start the tool
● generate a RSA key
● save and keep safe public and private keys

https://www.puttygen.com/


Building a Virtual Instance (used as template)

● Log in https://console.cloud.google.com using 
your institutional email credentials

● Select Compute Engine > Virtual Instances
● Create a new instance having the following 

configuration:
○ name: node1
○ region: us-central1
○ cpu: 2
○ memory: 8GB

https://console.cloud.google.com


Building a Virtual Instance (used as template)

● Create a new instance having the following 
configuration:

○ OS: centos
○ Version: 8
○ Boot Disk: Standard
○ Size: 50GB



Building a Virtual Instance (used as template)

● Using a text editor, open the public key created 
before (id_rsa.pub), copy the content and paste it 
into the right field (Security Tab)

● Take a look at the username assigned to the key 
(which is the same username who created the 
key)

● Let’s select the Create button to build the virtual 
instance.

● The VI is started up straightaway.



Getting an access to the virtual instance

● Using the Dashboard, let’s take a look to the virtual instance. The green button means it is running
● The Virtual Instance is assigned to an external IP. Take note of that and keep in mind that it is going to stay 

the same as long as the virtual instance is left running. After that, the address might change



Getting an access to the virtual instance

● Using your shell, run the following command:
○ ssh -l cuspide -i ./id_rsa 104.197.141.109

● Where:
○ cuspide: is the username showed in the security section
○ id_rsa: is the name of the private key created at the beginning
○ 104.197.141.109: the is virtual instance IP address showed by the dashbord

● If everything went well, you are inside your remote virtual instance. You can see that the prompt is different 
as it is something similar to cuspide@node1



Download and install OpenMPI

● sudo su
● yum install wget
● yum install perl
● yum install gcc
● yum install gcc-c++
● mkdir /usr/local/openMPI
● cd ~
● mkdir openMPI
● wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.1.tar.gz

○ Please, verify before downloading if a new release is available
● tar -xvzf openmpi-4.1.1.tar.gz



Download and install OpenMPI

● cd openmpi-4.1.1
● mkdir build
● ../configure --prefix=/usr/local/openMPI
● make all install
● exit (getting back to the non-admin user)
● vi ~/.bashrc

○ export PATH=$PATH:/usr/local/openMPI/bin



Copy the key pair

Copy on each virtual instance the key pair you created at the beginning:

scp -i id_rsa id_rsa* cuspide@104.197.141.109:/home/cuspide/.ssh

Be careful: the command should be run for each virtual instance changing properly username, IP address and 
home directory



The first program



Compiling and running the first application

● vi hostfile
○ localhost slots=4

● mpicc 01.c -o 01.o
● mpirun --hostfile hostfile -np 4 01.o



Create the cluster

● Stop the running virtual instance
● Select and Open the Virtual Instance
● Click on “Create Machine Image” button
● Set “template” as name
● Create the image



Create the cluster

● From Compute Engine > Machine images, select 
the template called as “template” and select 
“Create instance”

● Set the new instance name as node2
● Do the same for node2, node3 and node4



Create the cluster

Start all nodes and note that each Virtual Instance has got its own external IP as well as the Internal IP. This last 
one will be used to connect the virtual instance to each others



Try the cluster interconnection

● Get an access to the first node (node1):
○ ssh -l cuspide -i ./id_rsa 104.197.141.109

● Try to connect using ssh to all other virtual instances using private network:
○ ssh 10.128.0.4
○ ssh 10.128.0.5
○ ssh 10.128.0.6
○ ssh 10.128.0.7

● Modify the hostfile
○ 10.128.0.4 slots=2
○ 10.128.0.5 slots=2
○ 10.128.0.6 slots=2
○ 10.128.0.7 slots=2

● Run the application again
○ mpirun --hostfile hostfile -np 8 01.o


