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Shared memory multiprocessors

• A system with multiple CPUs “sharing” the same main memory is 
called multiprocessor.

• In a multiprocessor system all processes on the various CPUs share 
a unique logical address space, which is mapped on a physical 
memory that can be distributed among the processors.

• Each process can read and write a data item simply using load and 
store operations, and process communication is through shared 
memory.

• It is the hardware that makes all CPUs access and use the same 
main memory.
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Shared memory multiprocessors
• This is an architectural model simple and easy to use for 

programming; it can be applied to a wide variety of problems that 
can be modeled as a set of tasks, to be executed in parallel (at least 
partially) (Tanenbaum, Fig. 8.17).
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Shared memory multiprocessors
• Since all CPUs share the address space, only a single instance of the 

operating system is required.

• When a process terminates or goes into a wait state for whichever 
reason, the O.S. can look in the process table (more precisely, in the 
ready processes queue) for another process to be dispatched to the 
idle CPU. 

• On the contrary, in systems with no shared memory, each CPU 
must have its own copy of the operating system, and processes can 
only communicate through message passing.

• The basic issue in shared memory multiprocessor systems is 
memory itself, since the larger the number of processors involved, 
the more difficult to work on memory efficiently. 
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Shared memory multiprocessors
• All modern OS (Windows, Solaris, Linux, MacOS) support 

symmetric multiprocessing, (SMP), with a scheduler 
running on every processor (a simplified description, of 
course).

• “ready to run” processes can be inserted into a single queue, 
that can be accessed by every scheduler, alternatively there 
can be a “ready to run” queue for each processor.

• When a scheduler is activated in a processor, it chooses one 
of the “ready to run” processes and dispatches it on its 
processor (with a single queue, things are somewhat more 
difficult, can you guess why?)
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Shared memory multiprocessors

• A distinct feature in multiprocessor systems is load 
balancing.

• It is useless having many CPUs in a system, if processes are 
not distributed evenly among the cores.

• With a single “ready-to-run” queue, load balancing is 
usually automatic: if a processor is idle, its scheduler will 
pick a process from the shared queue and will start it on that 
processor.
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Shared memory multiprocessors

• Modern OSs designed for SMP often have a separate queue 
for each processor (to avoid the problems associated with a 
single queue).

• There is an explicit mechanism for load balancing, by which 
a process on the wait list of an overloaded processor is 
moved to the queue of another, less loaded processor. 

• As an example, SMP Linux activates its load balancing 
scheme every 200 ms, and whenever a processor queue 
empties.
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Shared memory multiprocessors

• Migrating a process to a different processor can be costly 
when each core has a private cache (can you guess why?).

• This is why some OSs, such as Linux, offer a system call to 
specify that a process is tied to the processor, independently 
of the processors load (affinity). 

• There are three classes of multiprocessors, according to the 
way each CPU sees main memory:
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Shared memory multiprocessors
1. Uniform Memory Access (UMA): the name of this type of 

architecture hints to the fact that all processors share a unique 
centralized primary memory, so each CPU has the same memory 
access time. 

• Owing to this architecture, these systems are also called Symmetric 
Shared-memory Multiprocessors (SMP) (Hennessy-patterson, Fig. 
6.1)
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Shared memory multiprocessors
2. Non Uniform Memory Access (NUMA): these systems have a 

shared logical address space, but physical memory is distributed
among CPUs, so that access time to data depends on data position, 
in local or in a remote memory (thus the NUMA denomination)

• These systems are also called Distributed Shared Memory (DSM)
architectures (Hennessy-Patterson, Fig. 6.2)
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Shared memory multiprocessors

3. Cache Only Memory Access (COMA): data have no specific 
“permanent” location (no specific memory address) where they stay 
and whence they can be read (copied into local caches) and/or 
modified (first in the cache and then updated at their “permanent” 
location).

• Data can migrate and/or can be replicated in the various memory 
banks of the central main memory.
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UMA multiprocessors
• The simplest multiprocessor system has a single bus to which 

connect at least two CPUs and a memory (shared among all 
processors).

• When a CPU wants to access a memory location, it checks if the 
bus is free, then it sends the request to the memory interface module 
and waits for the requested data to be available on the bus.

• Multicore processors are small UMA multiprocessor systems, 
where the first shared cache (L2 or L3) is actually the 
communication channel.

• Shared memory can quickly become a bottleneck for system 
performances, since all processors must synchronize on the single 
bus and memory access.
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UMA multiprocessors
• Larger multiprocessor systems (>32 CPUs) cannot use a single bus 

to interconnet CPUs to memory modules, because bus contention 
becomes un-manegeable.

• CPU – memory is realized through an interconnection network (in 
jargon “fabric”).
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UMA multiprocessors
• Caches local to each CPU alleviate the problem, furthermore each 

processor can be equipped with a private memory to store data of 
computations that need not be shared by other processors. Traffic 
to/from shared memory can reduce considerably (Tanenbaum, Fig. 
8.24)

14



UMA multiprocessors
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UMA multicores - manycores
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Caches and memory in 
multiprocessors

• Memory (and the memory hierarchy) in multiprocessors poses two 
different problems:

• Coherency: whenever the address space is shared – the same
memory location can have multiple instances (cached data) at 
different processors

• Consistency: whenever different access times can be seen by 
processors – write operations from different processors require 
some model for guaranteeing a sound, consistent behaviour ( the 
when issue – namely, the ordering of writes)

17



Crossbar switch UMA systems

• Even with a protocol like MESI, a single bus to interface all 
processors with memory limits the dimension of UMA 
multiprocessor systems, and usually 32 CPUs (cores) is considered 
a maximum.

• Beyond this limit, it is necessary to resort to another CPU-RAM 
interconnection system. The simplest scheme to interconnect n CPU 
with k memory is a crossbar switch, an architecture similar to that 
used for decades in telephone switching.
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Crossbar switch UMA systems
• A switch is located at each crosspoint between a vertical and a 

horizontal line, allowing to connect the two, when required.

• In the figure, three switches are closed, thus connecting CPU-
memory pairs (001-000), (101-101) and (110-010). (Tanenbaum, 
Fig. 8.27)
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Crossbar switch UMA systems

• It is possible to configure the switches so that each CPU can 
connect to each memory bank (and this makes the system UMA)

• The number of switches for these scheme scales with the number of 
CPUs and memories; n CPU and n memories require n2 switches.

• This pattern fits well medium scale systems (various multiprocessor 
systems from Sun Corporation use this scheme); certainly, a 256-
processor system cannot use it (2562 switches would be required !!).
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Multi-stage crossbar switch UMA

• To interconnect many CPUs, a solution is using a network 
set up with simple bi-directional switches with two inputs 
and two outputs: in these switches, each input can be 
redirected to each output (Tanenbaum, Fig. 8.28):
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Multi-stage crossbar switch UMA

• Messages between CPU and memory consist of four parts: 

• Module: which memory block is requested – which CPU is requestor

• Address: address within memory block;
• Opcode: operation to carry out (READ or WRITE);
• Value (optional): value to be written (for a WRITE).

• The switch can be programmed to analyse Module and to establish 
the output to forward the message to.
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Multi-stage crossbar switch UMA

• 2 x 2 switches can be used in many ways to set up multi-stage 
interconnection networks. One simple case is omega network
(Tanenbaum, Fig. 8.29): 
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Multi-stage crossbar switch UMA

• 8 CPUs are connected to 8 memories, using 12 switches laid out in 
three stages. Generalizing, n CPUs and n memories require log2n
stages and n/2 switch per stage, giving a total of (n/2)log2n
switches: much better than crossbar switches (n2).

• Let us see how the network works. CPU 011 wants to read a data 
item in RAM block 110. the CPU sends a READ request to switch 
1D with Module = 110 -- 011. 

• The switch analyses the most significant (leftmost) bit and uses it 
for routing: 0 routes on the upper exit, 1 on the lower one.

• In this case, the request is routed to 2D.
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Multi-stage crossbar switch UMA

• Switch 2D does the same: analyses the second-most significant bit 
(the central one) and routes the request to 3D.

• Finally, the least significant bit is used for the last routing, to block 
110 (path a in the drawing)

• At this point, the block is read and must be sent back to CPU 011: 
its“address” is used, but bits are analysed from right to left (least to 
most significant).

• Concurrently, CPU 001 wants to execute a WRITE in block 001. 
The process is similar (path b in the drawing). Since paths a and b
do not use the same switches, the two requests proceed in parallel 
and do not interfere with each other.
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Multi-stage crossbar switch UMA

• Let us analyse what happpens if CPU 000 accesses block 000. This 
request clashes with that by CPU 001 at switch 3A: either request 
must wait.

• Contrary to crossbar switch networks, omega networks are 
blocking: not all sequences of requests can be served concurrently.

• Conflicts can arise in using a connection or a switch, in accessing a 
memory block or in answering a CPU request.

• A variety of techniques can be used to minimize the probability of 
conflicts meanwhile maximizing CPU-memory parallelism.
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Other interconnection topologies
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Other interconnection topologies
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COMA multiprocessors 
• In a monoprocessor architecture, as well as in shared memory 

architectures considered so far, each block, each line are located in a 
single, precise position of the logical address space, and have 
therefore an address (“home address”). 

• When a processor accesses a data item, its logical address is 
translated into the physical address, and the content of the memory 
location containing the data is copied into the cache of the 
processor, where it can be read and/or modified. 

• In the last case, the copy in RAM will be eventually overwritten 
with the updated copy present in the cache of the processor that 
modified it.
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COMA multiprocessors
• This property (a most obvious one) turns the relationship between 

processors and memory into a critical one, both in UMA and in 
NUMA systems: 

• In NUMA systems, distributed memory can generate a high number 
of messages to move data from one CPU to another, and to maintain 
cohrency in “home address” values.

• Moreover, remote memory references are much slower than local 
memory ones. In CC-NUMA systems, this effect is partially hidden 
by the caches (but if many CPUs require a lot of remote data, 
performances are affected all the same)

• In UMA systems, centralized memory causes a bottleneck, and 
limits the interconnection between CPU and memory, and its 
scalability. 30



COMA multiprocessors
• To overcome these problems, in COMA systems (Cache Only 

Memory Access) the relationship between memory and CPU is 
managed according to a totally different principle.

• There is no longer a “ home address”, and the entire physical 
address space is considered a huge, single cache.

• Data can migrate (moving, not being copied) within the whole 
system, from a memory bank to another, according to the request of 
a specific CPU, that requires that data.
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COMA multiprocessors
• This memory management technique raises considerably hit rate, 

and performances. There are however two basic issues to be 
addressed:

1. When a logical address is translated into the corresponding 
physical one, and the addressed data is not in the cache or in 
local RAM, where is actually the data item?

2. When a data item A is brought into the RAM of a CPU, it can be 
necessary to overwrite an item B (because of lack of free blocks) 
What happens if that is the last copy of B (something really 
difficult to know, by the way)?

• Many solutions have been put forward, using hardware and more 
protocols; these systems (and associated variations) are still being 
conceived and assessed. 32



Caches and coherency

• Local caches pose a fundamental issue: each processor sees memory 
though its own cache, thus two processors can see different values 
for the same memory location (Hennessy-Patterson, Fig. 6.7)
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Time Event Cache A Cache B RAM 
location for X

0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3 CPU A stores 0 into X 0 1 0



Caches and coherency
• This issue is cache coherency, and if not solved, it prevents using 

caches in the processors, with heavy consequencies on 
performances.

• Many cache coherency protocols have been proposed, all of them 
designed to prevent different versions of the same cache block from 
being present in two or more caches (false sharing).

• All solutions are at the hardware level: the controller at each cache 
is capable of monitoring all memory requests on the bus coming 
from other CPUs, and, if necessary, the coherency protocols is 
activated. 
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Caches and coherency
Cache coherency is tackled with differents approaches in UMA
and NUMA multiprocessors (and many-core processors).

• UMA multiprocessors have a processors-to-memory pathway that 
favors bus interconnection, so that cache coherency is based on bus 
snooping

• NUMA multiprocessors rely on complex interconnection networks 
for processor-to-memory communication, and the only viable 
solution is based on cache directories

• Mixed mode approaches are emerging for MANY-CORE 
multiprocessors, with chips hosting a fairly large numbers of cores 
with on die shared caches.
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Snooping Caches

• A simple cache coherency protocol is write through. Let us review 
events that happen between a processor accessing data, and its 
cache:

• read miss: the CPU cache controller fetches from RAM the missing 
block and load its into the cache. Subsequent reads of the same data 
will be solved in the cache (read hit).

• write miss: the modified data are written directly in RAM: prior to 
this, the block containing the data is not loaded into local cache.

• write hit: the cache block is updated and the update is propagated 
to RAM. 

• Write operations are propagated to RAM, whose content is always 
updated .
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Snooping Caches
• Let us consider now the operations on the side of the snooper in 

another CPU (right column in table). cache A generates read/write 
ops., cache B is the snooping cache (Tanenbaum, Fig. 8.25). 

• read miss: cache B sees cache A fetch a block from memory but 
does nothing (in case of read hit cache B sees nothing at all)

• write miss/hit: cache B checks if it holds a copy of the modified 
data: if not, it takes no action. However, if it does hold a copy, the 
block containing it is flagged as invalid in cache B.
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Snooping Caches
• Since all caches snoop on all memory actions from other caches, 

when a cache modifies a data item, the update is carried out in the 
cache itself (if necessary) and in memory; the “old” block is 
removed from all other caches (actually, it is simply flagged as 
invalid).

• According to this protocol, no cache can have inconsistent data.

• There are variations to this basic protocol. As an example, “old” 
blocks could be updated with the new value, rather than being 
flagged as invalid (“replicating writes”).

• This version requires more work, but prevents future cache misses.
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Snooping Caches
• The nicest feature of this cache coherency protocol is simplicity.

• The basic disadvantage of write-through based protocols is 
inefficiency, since each write operation is propagated to memory, 
and the communication bus is likely to become the bottleneck.

• To alleviate the problem, in these protocols not all write operations 
are immediately propagated to RAM: a bit is set in the cache block, 
to signal that the block is up-to-date, while memory is “old”. 

• Sooner or later, the modified block will be forwarded to RAM, 
possibly after more updates (not after each of them).
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The MESI protocol
• One of the most common write-back cache coherency protocoll, used 

in modern processors, is MESI, where each cache entry can be in one 
of 4 possible states:

1. Invalid the cache entry does not contain valid data

2. Shared Multiple caches can hold the block,
RAM is updated.

3. Exclusive No other caches holds the block, RAM is updated.

4. Modified The block is valid, RAM holds an old copy of the
block, no other copies exist.
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The MESI protocol
• At system startup, all cache entries are flagged I: Invalid. 

• The first time a block is read into the cache of CPU 1, it is flagged 
E: Exclusive, because the cache is the exclusive owner of the block.
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• Subsequent reads of the data item from the same CPU will hit in the 
cache and will not involve the bus. (Tanenbaum, Fig. 8.26a)



The MESI protocol
• If CPU 2 reads the same block, the snooper in CPU 1 detects the 

read and signals over the bus that CPU 1 holds a copy of the same 
buffer. Both entries in the caches are flagged S: Shared.

• Subsequent reads in the block from CPU 1 or CPU 2 will hit in the 
appropriate cache, with no access to the BUS (Tanenbaum, Fig. 
8.26b)
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The MESI protocol
• If CPU 2 modifies a block flagged S, it sends over the bus an 

invalidate signal, so that other CPUs can invalidate their copy. The 
block is flagged M: Modified, and it is not written to RAM (if the 
block is flagged E, no signal is sent to other caches, since there are 
no other copies of block in other caches). (Tanenbaum, Fig. 8.26c).
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The MESI protocol

• What happens if CPU 3 tries to read the same block? The snooper in 
CPU 2 detects this, and holding the unique valid copy of block, it 
sends a wait signal to CPU 3, meanwhile updating the stale memory 
with the valid block.
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• Once memory has been updated, CPU 3 can fetch the required 
block, and the two copies of the block are flagged S, shared, in both 
caches (Tanenbaum, Fig. 8.26.d). 



The MESI protocol

• If CPU 2 modifies the block again, in its cache, it will send again an 
invalidate signal over the bus, and all other copies (such as that in 
CPU 3) will be flagged I: Invalid. Block in CPU 2 is flagged again 
M: modified. (Tanenbaum, Fig. 8.26e).
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The MESI protocol
• Finally, if CPU 1 tries to write into the block, CPU 2 detects the 

attempt, and sends a signal over the bus to make CPU 1 wait while 
the block is written to memory. At the end CPU 2 flags its copy as 
Invalid, since another CPU is about to modify it.

• At this point CPU 1 is writing a block that is stored in no cache.

• With a write-allocate policy, will be loaded in the cache of CPU 1 
and flagged M (Tanenbaum, Fig. 8.26f).

• If no write-allocate policy is active, the write directly acts on RAM, 
and the block continues to be in no cache.
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The MESIF protocol
• Developed by Intel for cache coherent non-uniform memory 

architectures. The protocol is based on five states, Modified (M), 
Exclusive (E), Shared (S), Invalid (I) and Forward (F).

• The F state is a specialized form of the S : it designates the (unique)  
responder for any requests for the given line, and it prevents 
overloading the bus due to multiple responder arbitration.

• This allows the requestor to receive a copy at cache-to-cache 
speeds, while allowing the use of as few multicast packets as the 
network topology will allow.

• Developed for supporting multi-core in a die, an adopted in recent 
(2015) many-core processors
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NUMA multiprocessors
• As in UMA systems, in NUMA systems too all CPUs share the 

same address space, but each processor has a local memory, visible 
to all other processors.

• So, differently from UMA systems, in NUMA systems access to 
local memory blocks is quicker than access to remote memory 
blocks.

• Programs written for UMA systems run with no change in NUMA 
ones, possibly with different performances because of slower access 
times to remote memory blocks (all other conditions being equal 
…)
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NUMA multiprocessors 

• Single bus UMA systems are limited in the number of processors, 
and costly hardware is necessary to connect more processors. 
Current technology prevents building UMA systems with more than 
256 processors.

• To build larger processors, a compromise is mandatory: not all 
memory blocks can have the same access time with respect to each 
CPU.

• This is the origin of the name NUMA systems: Non Uniform
Memory Access.
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NUMA multiprocessors 

• Since all NUMA systems have a single logical address space shared 
by all CPUs, while physical memory is distributed among 
processors, there are two types of memories: local and remote
memory.

• Yet, even remote memory is accessed by each CPU with LOAD and 
STORE instructions.

• There are two types of  NUMA systems:

• Non-Caching NUMA (NC-NUMA)

• Cache-Coherent NUMA (CC-NUMA)
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NC-NUMA multiprocessors 
• In a NC-NUMA system, processors have no local cache.

• Each memory access is managed with a modified MMU, which 
controls if the request is for a local or for a remote block; in the 
latter case, the request is forwarded to the node containing the 
requested data.

• Obviously, programms using remote data (with respect to the CPU 
requesting them) will run much slower than what they would, if the 
data were stored in the local memory (Tanenbaum, Fig. 8.30).   
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NC-NUMA multiprocessors 

• In NC-NUMA systems there is no cache coherency problem, 
because there is no caching at all: each memory item is in a single 
location.

• Remote memory access is however very inefficient. For this reason, 
NC-NUMA systems can resort to special software that relocates 
memory pages from one block to another, just to maximise 
performances. 

• A page scanner demon activates every few seconds, examines 
statistics on memory usage, and moves pages from one block to 
another, to increase performances.
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NC-NUMA multiprocessors

• Actually, in NC-NUMA systems, each processor can also have a 
private memory and a cache, and only private date (those allocated 
in the private local memory) can be in the cache.

• This solution increases the performances of each processor, and is 
adopted in Cray T3D/E.

• Yet, remote data access time remains very high, 400 processor 
clock cycles in Cray T3D/E, against 2 for retrieving data from local 
cache.
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CC-NUMA multiprocessors
• Caching can alleviate the problem due to remote data access, but 

brings back the cache coherency issue.

• A method to enforce coherency is obviously bus snooping, but this 
techniques gets too expensive beyond a certain number of CPUS, 
and it is much too difficult to implemenet in systems that do not rely 
on bus-based interconnections. A different approach is required.

• The common approach in CC-NUMA systems with many CPUs to 
enforce cache coherency is the directory-based protocol.

• The basic idea is to associate each node in the system with a 
directory for its RAM blocks: a database stating in which cache is 
located a block, and what is its state.
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CC-NUMA multiprocessors
• When a block of memory is addressed, the directory in the node 

where the block is located is queried, to know if the block is in any 
cache and, if so, if it has been changed respect to the copy in RAM.

• Since a directory is queried at each access by an instruction to the 
corresponding memory block, it must be implemented with very 
quick hardware, as an instance with an associative cache, or at least 
with static RAM.

• To illustrate a case of directory based protocol, let us consider a 
256-node system, each node equipped with a CPU and 16 MB of 
local RAM.

• Total RAM memory is 232 = 4 GB, each node holds 218 blocks each 
64 bytes (218 x 26 = 224 = 16 MB).
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CC-NUMA multiprocessors
• The address space is shared, node 0 containing memory addresses 

from 0 a 16 MB, node 1 from 16 to 32 MB, and so on.

• The physical address has 32 bits:

• the 8 most significant bits specify the node number holding the 
RAM block containing the addressed data.

• the subsequent 18 bits identify the block within the 16 MB memory 
bank

• the remaining 6 least significant bits address the byte within the 
block (Tanenbaum, Fig. 8.31b):
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CC-NUMA multiprocessors
• Let us assume a generic interconnection network to link nodes. 

Each node has a directory holding 218 entries to keep track of the 
blocks of the associated local memory. 

• Each entry in the directory registers if the block is stored in any 
cache, and if so, in which node. 

• Let us assume that each 64-byte block is stored in a single cache in 
some processor at most (Tanenbaum, Fig. 8.31a).
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CC-NUMA multiprocessors
• As an example, let us considers what happens when CPU 20 

executes a LOAD, thus specifying a RAM address

• CPU 20 forwards the addresss to its own MMU, which translates 
the LOAD into a physical address, e.g. 0x24000108. 

• The MMU splits the address into three parts whose decimal 
representation are: 

– node 36

– block 4

– offset 8

• The MMU sees that the addressed data belongs in node 36, and 
sends a request through the network to that node, to know if block 4 
is in a cache, and which one.
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CC-NUMA multiprocessors

• Node 36 forwards the request to its own directory, which checks 
and discovers that the block is in no remote node cache

• the block is thus fetched from local RAM and sent to node 20, and 
the directory is updated to register that block 4 is in the cache at 
node 20 (Tanenbaum, Fig. 8.31c).
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CC-NUMA multiprocessors
• Let us now consider the case of a request for block 2 in node 36. 

Node 36 directory discovers that the block is cached in node 82.

• Node 36 directory updates block 2 entry, to reflect that the block is 
at node 20, and sends node 82 a message requesting that block 2 is 
sent to node 20 and that the corresponding entry in node 82 be 
invalidated. 

• When are blocks updated in RAM? Only when they are modified. 
The simplest solution is doing so when a CPU executes a STORE: 
the update is propagated to the RAM holding the block addressed 
by the STORE.
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CC-NUMA multiprocessors 
• It can be noted that this type of architecture, usually referred to as 
“shared memory multiprocessor” has a lot of messages flowing 
through the interconnection network.

• The resulting overhead can be easily tolerated. Each node has 16 
MB of RAM, and 218 9-bit entries to keep track of the status of 
blocks (why 9?)

• The overhead is 9 x 218 bits / 16 MB, roughly 1,76 %, that can be 
easily tolerated (even though the directory is a high speed, 
expensive memory).

• With 32-byte blocks the overhead increases to 4%, while it 
decreases with 128-byte blocks. 
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CC-NUMA multiprocessors 
• In a real system, this directory based architecture is surely more 

complex:

1. In the example, a block can be in at most one cache, and system 
efficiency can be increased allowing blocks to be in more caches 
(nodes) at the same time.

2. by keeping track of the status of a block (modified, untouched) 
communication between CPU and memory can be minimized. 

• For instance, if a cache block has not been modified, the original 
block in RAM is still valid, and a read from a remote CPU for that 
block can be answered by the RAM itself, without fetching the 
block from the cache that holds a copy (since the two copies are 
identical) 
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Process synchronization
• In a monoprocessor, processes synchronize using system calls or 

constructs of the programming language: semaphores, conditional 
critical regions, monitors.

• These synchronization methods leverage on specific harware 
synchronization primitives: usually an uninterruptible machine 
instruction capable of fetching and modifying a value, or of 
exchanging the contents of a register and of a memory word.

• In a multiprocessor system similar primitives are required: 
processes share a unique address space and synchronization must 
use this address space, rather than resorting to message exchange 
mechanisms.
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Process synchronization
• Here is a classical solution to the critical section problem in a 

monoprocessor, using the atomic exchange operation. It can be 
used to build higher level synchronization primitives, such as 
semaphores and the like:

Shared var int lock = 0; // lock not set at the 
beginning

int v = 1; 
while ( v == 1) do  exch (v, lock); //entry section

critical section // within this, lock = 1 
lock = 0; // exit section
other code, not mutually exclusive     // lock is released

• this is the so called spin lock, because the process cycles on the lock 
variable, until the lock is released. 64



Process synchronization
• However, in a system where processes trying to synchronize 

through a shared variable actually run on different CPUs, atomicity 
of the synchronization instruction is not sufficient.

• On one processor, the atomic instruction will be executed without 
interrupts, but what about other processors?

• Would it be correct to disable all memory accesses since a 
synchronization primitive is launched, until the associated variable 
has been modified?

• It would work, but with a slow down in all memory operations not 
involved in synchronization (and so far we are ignoring any cache 
effect ...)
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Process synchronization
• Many processors use a couple of instructions, executed in a sequel. 

• The first instruction tries to bring to the CPU the shared variable 
used by all processors for synchronization.

• The second one tries to modify the shared variable, and returns a 
value that tells if the couple has been executed in atomic fashion, 
and in a multiprocessor this means: 

1. no other process has modified the variable used for synchronization 
before the couple has completed execution, and: 

2. no context switch occurred in the processor between the two 
instructions.
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Process synchronization
• Let [0(R1)] be the content of memory word addressed with 0(R1), 

used as shared synchronization variable.

• 1) LL R2, 0 (R1)    // linked load: loads[0(R1)] into R2
2)   SC R3, 0 (R1)    // store conditional: stores [R3] in [0(R1)]

• The execution of the two instructions with respect to [0 (R1)] is tied 
to what happens in-between : 

1. if [0 (R1)] is modified (by another process) before SC executes, SC 
“fails”, that is: 
[0 (R1)] is not modified by SC and 0 is written in R3.
If SC does not fail:
R3 is copied into [0 (R1)] and 1 is written in R3.

2. SC fails (with the same effects) if a context switch occurs in the 
CPU in-between the execution of the two instructions.
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Process synchronization
• The two special instructions LL and SC use an “invisible register”, 

the link register, that is a register not part of the ISA specification

• The LL store the memory address of the memory reference in the 
link register.

• The link register is cleared if

– the cache block it refers is invalidated

– a context switch is executed

• The SC checks that the memory reference and the link register 
match; if so, the LL SC couple behaves as an atomic memory 
reference

• Care must be taken in inserting other instruction between the LL 
and SC; only register-register instructions are safe.
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Process synchronization
• Let us examine how to obtain an “atomic” exchange between R4 

and [0( R1)] in a shared memory multiprocessor system (something 
similar to a spin lock, by the way):

retry: OR R3, R4, R0 // copy exchange value R4 in R3
LL R2, 0 (R1) // load linked: load [0(R1)] into R2 
SC R3, 0 (R1) // try to store exchange value in [0 (R1)] 
BEQZ R3, retry // spin if store failed
MOV R4, R2 // now put loaded value in R4

• When MOV is executed, R4 and [0 (R1)] have been exchanged 
“atomically”, and we are guaranteed that [0 (R1)] has not been 
changed by other processes before the completion of the exchange. 
We define EXCH the operation realized though this code.
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Process synchronization
• With an atomic operation such as EXCH, it is possible to implement 

spin locks: accesses to a critical section by a processor cycling on a 
lock variable, that controls the mutually exclusive access.

• The lock variable set to 0 or to 1 tells if the critical section is free or 
occupied by another process.

• Busy waiting to implement critical section is a viable solution only 
for very short critical sections.

• Very short critical sections can in turn be used to implement high 
level synchronization mechanisms and mutual exclusion, such as 
semaphores.

• Busy waiting is less of a problem in multiprocessors. Why?
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Process synchronization
• If there were no cache (and no coherency), the lock variable could 

be left in memory: a process tries to get the lock with an atomic 
exchange, and checks if the lock is free.

• remember: [0(R1)] = 0 = lock free; [0(R1)] = 1 = lock set

ADD R2, R0, #1 // initialize the support value in R2 
lockit: EXCH R2, 0 (R1) // atomic exchange 

BNEZ R2, lockit // Tries again if [0(R1)] = 1 = locked
critical section

• To release to lock, (to leave the critical section) the processor writes 
0 in [0(R1)].
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Process synchronization
• If cache coherency is in place, the lock variable can be kept in the 

cache of each processor.

• This makes spin lock more efficient, because the operations from 
processors that try to get a lock work on the caches, more 
efficiently.

• The spin lock procedure has to be slightly modified: each 
processors executes a read on the cached copy of the lock, until it 
finds the lock free.

• At this point, it tries to acquire the lock (that is, entering the critical 
section) using the atomic exchange. 
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Process synchronization
lockit: LD R2, 0 (R1) // load of lock

BNEZ R2, lockit // lock not available, spin again
ADD R2, R0, #1 // prepare value for locking
EXCH R2, 0 (R1) // atomic exchange
BNEZ R2, lockit // spin if lock was not 0

• The following chart shows a case with three CPUs working 
according to MESI (Hennessy-Patterson, Fig. 6.37): once CPU 0 
sets the lock to 0, the entries in the other two caches are invalidated, 
and the new value must be fetched from the cache in CPU 0. 

• One of the two gets the value 0 first, and succeds in the exchange, 
the other processor finds the lock variable set to 1, and start 
spinning again. 
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CPU 0 CPU 1 CPU 2 coherence state 
of lock

Bus activity

1 has 
lock

spins, testing if 
lock = 0

spins, testing if 
Lock = 0

Shared None

2 set lock 
to 0

(Invalidate 
received)

(Invalidate 
received)

Modified (P0) Write invalidate of lock 
variable from P0

3 Cache miss Cache miss change from 
Modified to 
Shared

Bus starts serving P2 
cache miss; write back 
from P0

4 (Wait while 
bus busy)

Lock = 0 Shared Cache miss for P2 
satisfied

5 Lock = 0 Executes exch Shared Cache miss for P1 
satisfied

6 Executes exch Completes exch: 
return 0 and sets 
Lock = 1

Modified (P2) Write invalidate of lock 
variable from P2

7 Completes exch: 
return 1 and sets 
Lock = 1

Enter critical 
section

Modified (P1) Write invalidate of lock 
variable from P1

8 Spins, testing if 
Lock = 0

None



Process synchronization

• This techniques works with little overhead (that is, spinning does 
not waist many clock cycles) only in systems with few CPUs, or at 
least few CPUs that try to get the lock.

• When the number of CPUs that try to get the lock can be “high” 
(say, > 10 CPUs), other more sophisticated mechanisms come into 
play, themselves based on the LL and SC synchronization 
instructions.
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Memory consistency models

• Cache coherency makes the various CPUs of a multiprocessor 
system see main memory in a consistent way.

• However, cache coherency does not tell what this consistency 
means. That is : in which order can/must a CPU see the changes 
on data performed by the other CPUs?

• Indeed, CPUs communicate through shared variables, and a CPU 
uses READ to “see”WRITEs form another CPU.

• So, which properties must hold for READs and WRITEs executed 
by processors on the memory?
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Memory consistency models
• Even in the simple case of NC-NUMA system, local and remote 

memory banks (with respect to CPUs) poses a memory consistency 
problem.

• Let us consider three CPUs that executes in order and in quick 
sequence the following three operations on memory word X:

– CPU A: write #1, X 
– CPU B: write #2, X
– CPU C: read X

• Which value does CPU C read? Missing a priori hypotheses, it can 
read 1, 2 or even the value preceding the first write, according to the 
distance of the three CPUS from the memory bank containing the 
addressed word.
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Memory consistency models
• Generally speaking, at a given time there can be more CPUs trying 

to read or write the same memory location shared among all CPUs.

• In DSM systems, access requests to the same memory location can 
overrun each other, thus being executed in an order other than the 
order of issue.

• Furthermore, each CPU has one/two/three caches, that can hold 
different copies of the same RAM block, not guaranteed to be 
updated.

• The outcome can be a total mess, unless tight rules and operative 
modes are imposed on the memory system with respect to the set of 
processors that share it.
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Memory consistency models
• These rules define what is said a memory consistency model; 

many proposals exist, and hardware support is available for them. 

• Some consistency models are more strict, and more difficult to 
implement, others are more relaxed. In any case, every model must 
specify what happens in the situations just described.

• Only on the basis of a specific consistency model it is possible to 
design reliable application for such systems, by relying explicitly on 
the behaviour of the memory subsystem.

• In the following, a description of some among the most common 
models, without a thorough detailed discussion, keeping in mind 
that it is the hardware layer that guarantees efficiency.
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Strict consistency
STRICT consistency

• It is the most obvious form of consistency: 

“any read from memory location X returns always the last value 
written in that memory location”.

• Unfortunately, it is also the most difficult one to realize: it requires 
an interface between memory and CPUS that manages all memory 
accesses in tight first come first served modality.

• Memory thus becomes a bottleneck that slows down dramatically a 
system built to work as largely as possible in parallel.

• This consistency model is actually NOT implemented at all. 
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Sequential consistency
SEQUENTIAL consistency

• A more realistic consistency model assumes that, given a sequence 
of read and write accesses to a memory word, the hardware chooses 
“an ordering (possibly in non deterministic way) and all CPUs see 
the same ordering”.

• As an example, let us consider CPU 1 that writes 100 in memory 
word X, and immediately after CPU 2 writes 200 to the same 
memory word.

• After the second write (possibly not yet completed), two more 
CPUs read twice (each of them) memory word X.
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Sequential consistency
• Here are 3 possible orderings ((b), (c) and (d)) of the six ops. : all of 

them perfectly allowable, but only the first complies with sequential 
consistency, with CPU 3 e CPU 4 both reading (200, 200) 
(Tanenbaum, Fig. 8.22).
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Sequential consistency

b) CPU 3 reads (200, 200) – CPU 4 reads (200, 200)

c) CPU 3 reads (100, 200) – CPU 4 reads (200, 200)

d) CPU 3 reads (100, 100) – CPU 4 reads (200, 100)

• These, and other, orderings are possible, because of the possibly 
different delays in the propagation of operations among CPUs and 
memory modules.

• But sequential consistency will prevent CPUs from seeing different 
orderings for events, so only case (b) will be allowed by a protocol 
enforcing sequential consistency.

83



Sequential consistency
• Actually, sequential consistency guarantees that, if there are 

multiple concurrent events, 
a specific ordering is chosen for these events, and this ordering 
is seen by all processors in the system (a thus by all processes in 
the system)

• It looks like a simple property, in reality it is very expensive to 
implement, and reduces potential performances, especially in 
parallel systems with many CPUs.

• Indeed, it requires imposing an ordering to the operations executed 
on the shared memory, withholding new operations until older ones 
have been completed.

• For this reason, more “relaxed” models have been proposed, that are 
easier to implement and less performance degrading.  One of these 
is “processor consistency” 84



Processor consistency

• It is a consistency model less strict, easier to implement, having two 
basic properties:

1. Writes from any CPU are seen by other CPUs in the order of issue. 
If CPU 1 writes A, B and C in a memory word X, a CPU 2 that 
reads X more times in a sequence will read A first, then B and lastly 
C.

2. For any memory location, any CPU reads all writes issued by any 
CPU to that location in the same order.
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Processor consistency

• Let us examine why this consistency model is weaker than the 
sequential one. Let us assume that CPU 1 writes into var values A, 
B and C, while CPU 2, concurrently to CPU 1, writes into var 
values X, Y and Z.

• According to sequential consistency, any other CPU reading more 
times var will read one of the possible combinations of the six 
writes, as an instance X, A, B, Y, C, Z, and this same sequence will 
be seen by any CPU in the system.

• According to processor consistency, different CPUs reading more 
times var can see different sequences. It is only guaranteed that no 
CPU will see a sequence in which B is before A, or Z before Y. The 
order in which a CPU executes its writes is seen by all other 
CPUs in the same way. 86



Processor consistency

• So, CPU 3 can read: A, B, C, X, Y, Z, while CPU 4 could read X, 
Y, Z, A, B, C

• CPU 3 can read: A,X,B,Y,Z,C, CPU 4 reads: X,A,B,Y,Z,C

• This consistency model is adopted in many multiprocessor systems.
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Sun Fire E25K
• A simple example of CC-NUMA architecture is the family Sun  

Fire by Sun Microsystems. Model E25K consists of 72 
UltraSPARC IV CPUs. 

• Each UltraSPARC IV CPU hosts a couple of UltraSPARC III 
processors sharing cache and memory

• Actually, the Sun Fire E25K system is a UMA / CC-NUMA 
system. 

• The system has been in production until 2009, and it has been 
replaced by Sun Blade servers, that host more recent multi-core 
processors.
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Sun Fire E25K
• The E25K consists of a maximum of 18 

boardsets, each set up with:

– a CPU-memory motherboard

– an I/O board with four PCI 
(Peripheral Component 
Interconnect) slots

– an expansion board, that connects 
the motherboard to the I/O board, 
and both to the centerplane.

• The centerplane hosts the various 
boards along with the switching 
circuitry for the communication among 
nodes
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Sun Fire E25K

• Each CPU-memory board contains 4 UltraSPARC IV CPUs and 4 
RAM modules, each 8 GB, with a total of 8 UltraSPARC III CPUs 
and 32 GB RAM.

• A system equipped with all 18 boardsets consists of 144 
UltraSPARC III CPUs, 72 memory modules, with a total of 576 GB 
RAM and 72 PCI slots.

• Each UltraSPARC IV has 64KB + 64 KB L1 cache, 2 MB L2 cache  
(on-chip) and 32 MB L3 cache.

– A funny annotation: 18 was chosen because a18-boardset system was the 
largest to pass a normal-sized door, without being disassembled.
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Sun Fire E25K
• The main feature of this architecture is the physically distributed, 

main memory. Which solution is there to connect 144 CPUs to 72 
RAM module, meanwhile assuring cache coherency?

• As already discussed, a shared bus with snooping is no viable 
solution with many CPUS, it would soon become a communication 
bottleneck. All the same, a 144 x 72 crossbar switch would be much 
too difficult and costly to realize.

• In Sun Fire, instead, the centralplane is set up with 3 18x18 crossbar 
switches, that interconnect the 18 boardsets.

• So, from each (CPU) boardset it is possible to access each other 
(memory) boardset. 
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Sun Fire E25K
• Through one 18 x 18 crossbar switch transit the addresses for 

remote memory requests, through a second one the answers 
(acknowledges) to the requests, and through the third the actual 
data. Using three different lines allows to increase the number of 
parallel accesses to remote memory.
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• In the figure, all 8 nodes are 
interconnected to one another through 
a 8 x 8 crossbar switch. With two 
more 8 x 8 crossbar switches, each 
node could sustain 3 concurrent 
communications with other nodes 
(Hennessy-Patterson, Fig. 8.13a)



Sun Fire E25K
• Within each boardset, instead,  processors are (at least in 

principle)interconnected with a shared bus with snooping support 
(Tanenbaum, Fig. 8.32)
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Sun Fire E25K
• Right because of this mixed-mode interconnection system, to 

enforce cache coherency, E25K applies a combined snooping-
directory based protocol

• Within each boardset, a variation of the MESI snooping protocol 
(MOESI) controls the 8 local CPUs: when a CPU addresses an item 
belonging to the memory section hosted on the same boardset, the 
snooping protocol fetches the data item, while keeping the 
coherency for all caches in the boardset.

• If the address involves a memory block that does not belong to the 
boardset, a directory-based, single-directory per boardset scheme is 
used; it tracks all blocks in the boardset, and manages all requests 
coming from remote boardsets.
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Sun Fire E25K
• With this memory management, Sun Fire E25K can reach 

high performances, with a minimum throughput of 40 
Gb/sec among different boardets (in a fully configured 
systems with 18 boardsets). 

• However, if software is able to allocate pages among 
memory boards so that most memory accesses from CPUs 
turn out to be local, system performances benefit most.
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SGI ALTIX
• SGI ALTIX systems by SGI (Silicon Graphics Inc.) are CC-NUMA 

architectures that scale very well, both in the number of processors 
and in addressable memory.

• ALTIX systems are designed mainly for scientific (and military) 
applications, while Sun servers (Fire and more recently Blade) are 
bettered taylored to business applications. 

• They are a follow-up to SGI ORIGIN series, that hosted RISC 
MIPS-R1000 processors, replaced in ALTIX systems by ITANIUM 
2 and Xeon.

• There are various systems, starting with ALTIX 330, configurable 
with a maximum of 16 processors and 128 GB RAM, up to ALTIX 
4700, that can accommodate up to 2048 dual core Itanium 2 
processors and  32 TB RAM. ALTIX UV (end of 2009), can be 
configured with 32 to 2048 Xeon cores and up to TB RAM 96



SGI ALTIX
• An ALTIX systems consists of a set of nodes, the main are named 

C-brick, computetional units hosting 4 Itanium 2 interconnected in 
couples to a maximum of 16+16 GB RAM.

• A Shared-hub (SHUB) connects each couple of processors to the 
interconnection network, and implemenets cache coherency.
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• Nodes can be also 
memory banks only (M-
brick), so that the amount 
of RAM is not limited by 
the number of systems in 
the CPU.



SGI ALTIX
• Itanium 2 was chosen because it can address up to 250 bytes of 

physical memory, that is one million gigabyte RAM (a thousand 
terabyte)

• Itanium 2 can manage pages with dimensions ranging from 4KB to 
4GB, and has 2 128-entry TLBs to handle separately the translation 
of logical addresses from instructions and data into physical 
addresses.

• It is possible (in the best case) to address up to 500 GB istructions 
and 500 GB data without incurring in “TLB page miss”, a very 
costly event in a system with physical distributed memoryun evento 
che è  particolarmente pesante da gestire in un sistema a m.
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SGI ALTIX
• The cache coherency protocol is realized with the SHUBs, that 

interface both the snooping logic of the 4 Itanium in a C-brick and 
directory base protocol used over the interconnection network.

• If the request by one CPU can be satisfied with the content of a 
cache in another CPU in the node, data are transmitted directly to 
the cache of the requesting processor without forwarding the request 
to memory.

• Otherwise, the request is handled by the directory based protocols, 
managed by the SHUBs, each hosting the directory of the 
corresponding Itanium couple.
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SGI ALTIX
• Itanium Cache hierarchy: note the different snooping protocols used 

for the caches.
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SGI ALTIX
• Nodes are intrconnected with a fat tree network (called NUMAlink 

4) sustaining 1600 MB/sec through routers: the R-brick
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