
Cache Coherence

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Shared memory multi-processor
▪ Processors read and write to shared variables

- More precisely: processors issues load and store instructions

▪ Intuitively... reading value at address should return the last value written at the
address by any processor

Processor Processor Processor Processor

Interconnect

Memory I/O

 (CMU 15-418, Spring 2012)

The cache coherence problem
Modern processors replicate contents of memory in local caches
Result of writes: processors can have different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory I/O

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int	 foo; (stored at address X)

P1	 store	 X 1 0 0

P1	 load	 Y
(say	 this	 load	 causes	
	 eviction	 of	 foo)

10 2

Chart shows value of foo (variable stored
at address X) stored in main memory and in
each processor’s cache **

** Assumes write-back cache behavior

P3	 load	 X 01 0 0 miss

P3	 store	 X 01 0 2

P2	 load	 X 01 0 2hit

P2	 load	 X 0 0 0miss

P1	 load	 X 0 0miss

 (CMU 15-418, Spring 2012)

The cache coherence problem
▪ Reading value at address X should return the last value written at address X by any

processor.

▪ Coherence problem exists because there is both global state (main memory) and
local state (contents of private processor caches).

 (CMU 15-418, Spring 2012)

Cache hierarchy of Intel Core i7

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

L1: (private per core)
32 KB
8-way set associative, write back
2 x 16B loads + 1 x 16B store per clock
4-6 cycle latency
10 outstanding misses

L2: (private per core)
256 KB
8-way set associative, write back
32B / clock, 12 cycle latency
16 outstanding misses

L3: (per chip)
8 MB, inclusive
16-way set associative
32B / clock per bank
26-31 cycle latency

64 byte cache line size

Review: key terms
- cache line
- write back vs. write

through policy
- inclusion

 (CMU 15-418, Spring 2012)

Intuitive expectation of shared memory
▪ Reading value at address should return the last value written at the address by any

processor.

▪ Uniprocessor, providing this behavior is fairly simple, since writes typically come
from one client: the processor
- Exception: I/O via DMA

 (CMU 15-418, Spring 2012)

Coherence is an issue in a single CPU system

▪ Common solutions:
- CPU writes using uncached stores (e.g., driver code)
- OS support:

- mark pages containing shared buffers as uncached
- OS "ushes pages from cache when I/O completes

▪ In practice DMA transfers are infrequent compared to CPU loads/store
(slower solutions are acceptable)

Processor

Network
Card

Interconnect

Memory

Cache

Case 1:
Processor writes to buffer in main memory
Tells network card to async send buffer
Network card many transfer stale data

Case 2:
Network card receives message
DMA message contents into buffer in main memory
Noti#es CPU msg received, buffer ready to read
CPU may read stale data

Message
Buffer

Consider I/O device performing DMA data transfer

 (CMU 15-418, Spring 2012)

Problems with the intuition
▪ Reading value at address should return the last value written at the address

by any processor.

▪ What does “last” mean?
- What if two processors write at the same time?
- What if a write by P1 is followed by a read from P2 so close in time, it’s

impossible to communicate occurrence to other processors?

▪ In a sequential program, “last” is determined by program order (not time)
- Holds true within a thread of a parallel program
- But need to come up with a meaningful way to describe orders across threads

 (CMU 15-418, Spring 2012)

De#nition: coherence
A memory system is coherent if:

The results of a parallel program’s execution are such that for
each memory location, there is a hypothetical serial order of all
program operations to the location that is consistent with the
results of execution, and:

1. Memory operations issued by any one process occur in the
order issued by the process

2. The value returned by a read is the value written by the
last write to the location in the serial order

Chronology of
operations on

address X

P0 write: 5

P1 read (5)

P2 read (5)

P0 read (5)

P1 write: 25

P0 read (5)

 (CMU 15-418, Spring 2012)

De#nition: coherence (said differently)
A memory system is coherent if:

1. A read by processor P to address X that follows a write by P to address X,
should return the value of the write by P (assuming no other processor wrote to X in between)

2. A read by a processor to address X that follows a write by another
processor to X returns the written value... if the read and write are
sufficiently separated in time (assuming no other write to X occurs in between)

3. Writes to the same location are serialized; two writes to the same location
by any two processors are seen in the same order by all processors.
(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system)

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that
precisely when it is propagated is not de#ned by de#nition of coherence.

Condition 3: write serialization

 (CMU 15-418, Spring 2012)

Write serialization
Writes to the same location are serialized; two writes to the same location by any
two processors are seen in the same order by all processors.
(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Example: P1 writes value a to X. Then P2 writes value b to X.
Consider situation where processors observe different order of writes:

Order observed by P1
x ← a

x ← b

... ...

Order observed by P2
x ← b

x ← a

In terms of #rst coherence de#nition: there is no global ordering of loads and
stores to X that is in agreement with results of this parallel program.

 (CMU 15-418, Spring 2012)

Coherence vs. consistency
▪ Coherence de#nes behavior of reads and writes to the same memory

location

▪ “Memory consistency” de#nes the behavior of reads and writes with respect
to accesses to other locations (topic of a future lecture)
- Consistency deals with the WHEN of write propagation

▪ For the purposes of this lecture:
- If processor writes to address X and then writes to address Y. Then any

processor that sees result of write to Y, also observes result of write to X.

 (CMU 15-418, Spring 2012)

Implementing coherence
▪ Software-based solutions

- OS uses page fault mechanism to propagate writes
- Implementations provide memory coherence over clusters of

workstations
- We won’t discuss these solutions

▪ Hardware-based solutions
- “Snooping” based
- Directory based

 (CMU 15-418, Spring 2012)

Shared caches: coherence made easy
▪ Obvious scalability problems

- Interference / contention
▪ But can have bene#ts:

- Fine-grained sharing (overlapping working sets)
- Actions by one processor might pre-fetch for another

Processor Processor Processor Processor

Memory I/O

Cache

 (CMU 15-418, Spring 2012)

Snooping cache-coherence schemes

▪ All coherence-related activity is broadcast to all processors
(actually, cache controllers) in the system

▪ Cache controllers monitor (“snoop”) memory operations, and react
accordingly to maintain memory coherence

Processor

Interconnect

Memory

Cache

Processor

Cache

Processor

Cache

. . .
Notice: now cache controller must respond
to actions from “both ends”:

1. LD/ST requests from its processor

2. Coherence-related activity broadcast
over-interconnect

 (CMU 15-418, Spring 2012)

Very simple coherence implementation
Write-through caches

Granularity of coherence is cache block

Upon write, broadcast invalidation

Next read from other processors will
trigger cache miss
(retrieve updated value due to write-through policy)

P0 $ P1 $ mem location XAction

0

P1	 load	 X 0 0 0

P0	 load	 X 0 0

Cache

Processor
P0

Memory

Cache

. . .

Interconnect

Processor
P1

Bus activity

cache	 miss	 for	 X

cache	 miss	 for	 X

P0	 write	 100	 to	 X 100 100invalidation	 for	 X

P1	 load	 X 100100 100cache	 miss	 for	 X

 (CMU 15-418, Spring 2012)

Write-through invalidation: state diagram

I
(Invalid)

V
(Valid)

PrRd / --

PrRd / BusRd

PrWr/ BusWr **

PrWr / BusWr

BusWr/--

Broadcast (bus) initiated transaction

Processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

** Write no-allocate policy (for simplicity)

Requirements of the interconnect:
1. All write transactions visible to all cache controllers

2. All write transactions visible to all cache controllers in
the same order

Simplifying assumptions here:
1. Interconnect and memory transactions are atomic

2. Process waits until previous memory operations is
complete before issuing next memory operation

3. Invalidation applied immediately as part of receiving
invalidation broadcast

 (CMU 15-418, Spring 2012)

Write-through policy is inefficient
▪ Every write operation goes out to memory

- Very high bandwidth requirements

▪ Write-back caches absorb most write traffic as cache hits
- Signi#cantly reduces bandwidth requirements
- But now how do we ensure write propagation/serialization?
- Require more sophisticated coherence protocols

 (CMU 15-418, Spring 2012)

Review: write miss behavior of write-back cache
(uniprocessor case)

Example: code executes int	 x	 =	 1;

1. Processor performs write to address in line that is not resident in cache
2. Cache loads line from memory
3. One word in cache is updated
4. Cache line is marked as dirty

Data (64 bytes on Intel Core i7)TagLine state

Dirty bit

 (CMU 15-418, Spring 2012)

Cache coherence with write-back caches

Cache

Processor
P0

Memory

Cache

. . .

Interconnect

Processor
P1

X

Write to X Load X

▪ Dirty state of cache line now indicates exclusive ownership
- Exclusive: only cache with a valid copy
- Owner: responsible for supplying data upon request

 (CMU 15-418, Spring 2012)

Invalidation-based write-back protocol
▪ A line in the “exclusive” state can be modi#ed without notifying

other caches
- Other caches don’t have the line resident, so other processors cannot read these

values [without generating a memory read transaction]

▪ Can only write to lines in the exclusive state
- If processor performs a write to line that is not exclusive in cache, cache controller

#rst broadcasts a read-exclusive transaction
- Read-exclusive tells other caches about impending write

(“you can’t read anymore, because I’m going to write”)
- Read-exclusive transaction is required even if line is valid in processor’s local cache
- Dirty state implies exclusive

▪ When cache controller snoops a read exclusive for a line it contains
- Must invalidate the line in its cache

 (CMU 15-418, Spring 2012)

Basic MSI write-back invalidation protocol
▪ Key tasks of protocol

- Obtaining exclusive access for a write
- Locating most recent copy of data on cache miss

▪ Cache line states
- Invalid (I)
- Shared (S): line valid in one or more caches
- Modi#ed (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

▪ Processor events
- PrRd (read)
- PrWr (write)

▪ Bus transactions
- BusRd: obtain copy of line with no intent to modify
- BusRdX: obtain copy of line with intent to modify
- BusWB: write line out to memory

 (CMU 15-418, Spring 2012)

MSI state transition diagram

S
(Shared)

M
(Modi#ed)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / "ush

Broadcast (bus) initiated transaction

Processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / "ush

BusRd / --

Alternative state names:
- E (exclusive, read/write access)
- S (potentially shared, read-only access)
- I (invalid, no access)

 (CMU 15-418, Spring 2012)

Does MSI satisfy coherence?
▪ Write propagation

- Via invalidation

▪ Write serialization
- Writes that appear on bus are ordered by the order they appear on bus (BusRdX)
- Reads that appear on bus are ordered by order they appear on bus (BusRd)
- Writes that don’t appear on the bus (PrWr to line already in M state):

- Sequence of writes to line comes between two bus transactions for the line

- All writes in sequence performed by same processor, P (that processor certainly observes them in
correct sequential order)

- All other processors observe noti#cation of these writes only after a bus transaction for the line. So
all the writes come before the transaction.

- So all processors see writes in the same order.

 (CMU 15-418, Spring 2012)

MESI invalidation protocol
▪ MSI requires two bus transactions for the common case of

reading data, then writing to it
- Transaction 1: BusRd to move from I to S state
- Transaction 2: BusRdX to move from S to M state

▪ This inefficiency exists even if application has no sharing at all

▪ Solution: add additional state E (“exclusive clean”)
- Line not modi#ed, but only this cache has copy
- Decouples exclusivity from line ownership (line not dirty, so copy in memory is

valid copy of data)
- Upgrade from E to M does not require a bus transaction

 (CMU 15-418, Spring 2012)

MESI state transition diagram

E
(Exclusive)

M
(Modi#ed)

PrRd / --
PrWr / --

PrWr / BusRdX BusRd / "ush

I
(Invalid)

PrWr / BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX / "ush

BusRd / --

S
(Shared)

PrRd / --

PrRd / BusRd
(no other cache
asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --
(another cache
asserts shared)

 (CMU 15-418, Spring 2012)

Lower-level choices
▪ Who should supply data on a cache miss when line is in the E

or S state of another cache?
- Can get data from memory or can get data from another cache
- If source is another cache, which one should provide it?

▪ Cache-to-cache transfers add complexity, but commonly used
today to reduce both latency of access and memory
bandwidth requires

 (CMU 15-418, Spring 2012)

Increasing efficiency (and complexity)
▪ MOESI (5-stage invalidation-based protocol)

- In MESI protocol, transition from M to S requires "ush to memory
- Instead transition from M to O (O=”owned, but not exclusive”) and do not "ush to

memory
- Other processors maintain shared line in S state, one processor maintains line in O state
- Data in memory is stale, so cache with line in O state must service cache misses
- Used in AMD Opteron

▪ MESIF (5-stage invalidation-based protocol)
- Like MESI, but one cache holds shared line in F state rather than S (F=”forward”)
- Cache with line in F state services miss
- Simpli#es decision of which cache should service miss (basic MESI: all caches respond)
- Used by Intel

 (CMU 15-418, Spring 2012)

Implications of implementing coherence

▪ Each cache must listen and react to all coherent traffic
broadcast on interconnect
- Duplicate cache tags so that tag lookup in response to coherence actions does

not interfere with processor loads and stores

▪ Additional traffic on interconnect
- Can be signi#cant when scaling to higher core counts

▪ To date, GPUs do not implement cache coherence
- Thus far, overhead of coherence deemed not worth it for graphics applications

 (CMU 15-418, Spring 2012)

Implications to software developer
What could go wrong with this code?

//	 allocate	 per	 thread	 variable	 for	 local	 accumulation

int	 myCounter[NUM_THREADS];

Better:
//	 allocate	 per	 thread	 variable	 for	 local	 accumulation

struct	 PerThreadState	 {

	 	 int	 myCounter;

	 	 char	 padding[64	 -‐	 sizeof(int)];

};

PerThreadState	 myCounter[NUM_THREADS];

 (CMU 15-418, Spring 2012)

False sharing
▪ Condition where two threads write to different variables, but

variable’s addresses map to same cache line

▪ Cache line ping-pongs between caches of writing processors,
generating signi#cant amounts of communication due to
coherence protocol

▪ No inherent communication, all artifactual communication

▪ Can be a factor in when programming for cache coherent
architectures (assignment 3)

 (CMU 15-418, Spring 2012)

Review: MSI and MESI

S
(Shared)

M
(Modi!ed)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / "ush

I
(Invalid)

PrWr /
BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / "ush

BusRd / --

E
(Exclusive)

M
(Modi!ed)

I
(Invalid)

PrWr / --

S
(Shared)

BusRd / --

PrRd / BusRd
(no other cache
asserts shared)

Note: only showing
transitions unique to MESI

 (CMU 15-418, Spring 2012)

MSI vs. MESI performance study
Bu

s T
ra
ffi

c (
M

B/
se

c)

Barnes-Hut

MESI MSI MESI MSI MESI MSI MESI MSI MESI MSI MESI MSI

LU Ocean Radiosity Radix Ray Trace

Extra complexity of MESI does not help much in these applications (best case: about 20% bene!t for Ocean)
since E → M transitions occur infrequently

 (CMU 15-418, Spring 2012)

A comment on Intel’s MESIF
▪ MESIF (5-stage invalidation-based protocol)

- Like MESI, but one cache holds shared line in F state rather than S (F=”forward”)
- Cache with line in F state services miss

- Reduces interconnect traffic: in basic MESI, all caches in S state respond
- Upon cache read miss (with sharing present), cache line enters F state (rather than S)

- F state migrates to last cache that loads the line
- Rationale: this cache is the least likely to evict the line

 (CMU 15-418, Spring 2012)

▪ Snooping coherence evaluation:
- How does cache block size affect coherence?

▪ Upgrade-based coherence protocols
- Last time: invalidation-based protocols

▪ Coherence with multi-level cache hierarchies
- How do multi-level hierarchies complicate implementation of snooping?

 (CMU 15-418, Spring 2012)

Impact of cache block size
▪ Recall that cache coherence adds a fourth type of miss:

coherence misses

▪ How to reduce cache misses:
- Capacity miss: enlarge cache, increase block size
- Con"ict miss: increase associativity
- Cold/true sharing coherence: increase block size

▪ How can larger block size hurt? (assume: !xed-size cache)
- Increase cost of a miss (larger block to load into cache)
- Can increase misses due to con"icts
- Can increase misses due to false sharing

 (CMU 15-418, Spring 2012)

Impact of cache block size: miss rate
M

iss
 Ra

te
 %

0.6

0.5

0.4

0.3

0.2

0.1

0

Upgrade
False sharing
True sharing
Capacity/Con"ict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity

Cache Line Size

M
iss

 Ra
te

 %

12

10

8

6

4

2

0

Upgrade
False sharing
True sharing
Capacity/Con"ict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Ocean Radix Sort

Cache Line Size

Simulated 1 MB cache

 (CMU 15-418, Spring 2012)

Example: parallel radix sort

Input:

P0 P1 P2 P3

Output:

P0 P1 P2 P3

Sort array of N, b-bit numbers
Here: radix = 24 = 16

b bits

r bits
(iter 0)

r bitsr bitsr bits
(iter [b/r]-1)

For each group of r bits (this is serial iteration)
 In parallel, sort numbers by group value
 (by placing numbers into bins)

LSB

Potential for lots of false sharing
False sharing decreases with increasing array size

 (CMU 15-418, Spring 2012)

Impact of cache block size: traffic
Simulated 1 MB cache

0.16

0.12

0.08

0.04

0

8

6

4

2

0

1.6

1.2

0.8

0.4

0

Address Bus
Data Bus

Address Bus
Data Bus

Address Bus
Data Bus

8 16 32 64 128 256
Barnes-Hut

8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256
Radiosity Ray Trace Radix Sort LU Ocean

By
te

s /
 In

str
uc

tio
n

Cache Line Size

By
te

s /
 FL

OP

 (CMU 15-418, Spring 2012)

Some thoughts
▪ In general, larger cache lines:

- Fewer misses
- But more traffic (unless spatial locality is perfect)

▪ Which should we prioritize?
- Extra traffic okay if magnitude of traffic isn’t approaching capability of interconnect
- Latency of miss okay if processor has a way to tolerate it (e.g., multi-threading)

▪ These are just notions. If you were building a system, you would
simulate on many important apps and make decisions based on
your graphs and needs

 (CMU 15-418, Spring 2012)

Update-based coherence protocols
▪ Thus far, we’ve talking only about invalidation-based protocols

- Main idea: cache obtains exclusive access to line in order to write to it
- Possible issues:

- Cache must reload entire line after invalidation
- False sharing

▪ Invalidation-based protocols most commonly used today
- But let’s talk about one update-based protocol for fun

 (CMU 15-418, Spring 2012)

Invalidate vs. update
▪ Intuitively, upgrade would seem preferable if other

processors sharing data will continue to access it after a write

▪ Upgrades are overhead if:
- Data just sits in cache (and is never used again)
- Lots of writes before the next read

 (CMU 15-418, Spring 2012)

Reality: multi-level cache hierarchies

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Recall Intel Core i7 hierarchy

▪ Challenge: changes made at !rst level
cache may not be visible to second level
cache controller than snoops the
interconnect.

▪ How might Snooping work for a cache
hierarchy?
1. All caches snoop interconnect

independently? (inefficient)
2. Maintain “inclusion”

 (CMU 15-418, Spring 2012)

Inclusion property of caches
▪ All lines in closer [to processor] cache are in farther cache

- e.g., contents of L1 are a subset of contents of L2
- Thus, all transactions relevant to L1 are also relevant to L2, so it is

sufficient for only the L2 to snoop the interconnect

▪ If line is in owned state (M in MESI, M or O in MOESI) in L1, it must also be in
owned state in L2
- Allows L2 to determine if a bus transaction is requesting a modi!ed block

in L1 without requiring information from L1

 (CMU 15-418, Spring 2012)

Is inclusion maintained automatically if L2 is
larger than L1? No.
▪ Simple example:

- Let L2 cache be twice as large as L1 cache
- L1 an L2 have the same block size, are 2-way set associative, and use a LRU replacement policy
- Let blocks B1, B2, B3 map to the same set of the L1 cache
- B1 and B2 are resident in the L1 and L2 caches

B1
B2

B1
B2

L2
Cache

L1
Cache

Processor references to B1 and B2 are
serviced by L1 cache. The access history to
B1 and B2 are different in the L1 than in
the L2!

Say processor accesses B1 (L1+L2 miss).
Then B2 (L1+L2 miss). Then B1 many times
(L1 hits).

Now access B3. L1 and L2 might choose to
evict different blocks, because access
histories differ.

Inclusion no longer holds!

✘

✘

 (CMU 15-418, Spring 2012)

Maintaining inclusion: handling invalidations

L1
Cache

L2
Cache

Processor

Interconnect

BusRdX / --

Block invalidated in L2 cache due to
BusRdX from another cache.

Must also invalidate block in L1

Invalidate

B1

B1

✘

✘

“in L1” bit
One solution: each L2 block maintains a bit
indicating if block also exists in L1

This bit tells the L2 cache coherence
invalidations of the line need to be
propagated to L1.

 (CMU 15-418, Spring 2012)

Maintaining inclusion: L1 write hit

L1
Cache

L2
Cache

Processor

Interconnect

Assume L1 is a write-back cache. Processor
writes to block B1. (L1 write hit)

Block B1 in L2 cache is in modi!ed state in
the coherence protocol, but it has stale
data!

When coherence protocol requires B1 to be
"ushed from L2 (e.g., another processor
loads B1), L2 cache must request the data
from L1.

Add another bit for “modi!ed-but-stale”

Flush B1

B1

B1

“in L1” bit

“modi!ed-but-
stale” bit

BusRd / Flush B1

 (CMU 15-418, Spring 2012)

Snooping based cache coherence summary
▪ Main idea: cache operations that effect coherence are broadcast to all other caches

▪ Caches listen (“snoop”) for these messages, react accordingly

▪ Multi-level cache hierarchies add complexity to implementations

▪ Workload driven evaluation: Larger cache block sizes...
- Decrease cold, capacity, true sharing misses
- Can increase false sharing misses
- Increase interconnect traffic

▪ Scalability of snooping implementations limited by ability to broadcast coherence
messages to all caches
- Snooping used in smaller-scale multiprocessors

(such as the multi-core chips in all our machines today)
- Next time: scaling cache coherence via directory-based approaches

