
Multithreading

• Introduction
• Fine-grained Multithreading
• Coarse-grained Multithreading
• Simultaneous Multithreading
• Multithreading in Intel processors

•1

Multi-Threading

• A multithreaded CPU is not a parallel architecture, strictly speaking;
multithreading is obtained through a single CPU, but it allows a
programmer to design and develop applications as a set of programs
that can virtually execute in parallel: namely, threads.

• If these programs run on a “multithreaded” CPU, they will best
exploit its architectural features.

• What about their execution on a CPU that does not support
multithreading?

•2

Multi-Threading

• Multithreading addresses a basic problem of any pipelined CPU: a
cache miss causes a “long” wait, necessary to fetch from RAM the
missing information. If no other independent instruction is available
to be executed, the pipeline stalls.

• Multithreading is solution to avoid waisting clock cycles as the
missing data is fetched: making the CPU manage more peer-threads
concurrently; if a thread gets blocked, the CPU can execute
instructions of another thread, thus keeping functional units busy.

• So, why cannot be threads form different tasks be issued as well?

•3

Multi-Threading
• To realize multithreading, the CPU must manage the computation

state of each single thread.

• Each thread must have a private Program Counter and a set of
private registers, separate from other threads.

• Furthermore, thread switch must be much more efficient than
process switch, that requires usually hundreds or thousands of clock
cycles (process switch is a software procedure, mostly)

• There are two basic techniques for multithreading:

1. fine-grained multithreading

2. coarse-grained multithreading

• NB: in the following, we cover initially “single-issue” processors
•4

Fine-grained Multi-Threading

1. Fine-grained Multithreading: switching among threads happens
at each instruction, independently from the the fact that the thread
instruction has caused a cache miss.

• Instructions “scheduling” among threads obeys a round robin
policy, and the CPU must carry out the switch with no overhead,
since overhead cannot be tolerated

• If there is a sufficient number of threads, it is likely that at least one
is active (not stalled), and the CPU can be kept running.

•5

Fine-grained Multi-Threading
• (a)-(c) three threads and associated stalls (empty slots).

(d) Fine-grained multithreading. Each slot is a clock cycle, and we
assume for simplicity that each instruction can be completed in a
clock cycle, unless a stall happens.
(Tanenbaum, Fig. 8.7)

•6

• In this example, 3 threads keep the CPU running, but what if A2
stall lasts 3 or more clock cycles?

Fine-grained Multi-Threading
• CPU stalls can be due to a cache miss, but also to a true data

dependence, or to a branch: dynamic ILP techniques do not always
guarantee that a pipeline stall is avoided.

• With fine-grained multithreading in a pipelined Architecture, if:

– the pipeline has k stages,
– there are at least k threads to be executed,
– and the CPU can execute a thread switch at each clock cycle

• then there can never be more than a single instruction per thread in
the pipeline at any instant, so there cannot be hazards due to
dependencies, and the pipeline never stalls (… another assumption
is required …).

•7

Fine-grained Multi-Threading
• Fine-grained multithreading in a CPU with a 5-stage pipeline: there

are never two instructions of the same thread concurrently active in
the pipeline. If instructions can be executed out of order, then it is
possible to keep the CPU fully busy even in case of a cache miss.

•8

A1 A2 A3 A4 A5 A6 ...

B1 B2 B3 B4 B5 B6 ...

C1 C2 C3 C4 C5 C6 ...

D1 D2 D3 D4 D5 D6 ...

E1 E2 E3 E4 E5 E6 ...

E1
IF

D1
ID

C1
EX

B1
MEM

A1
WB

A2
IF

E1
ID

D1
EX

C1
MEM

B1
WB

B2
IF

A2
ID

E1
EX

D1
MEM

C1
WB

clock5 threads in execution:

Fine-grained Multi-Threading
• Besides requiring an efficient context switch among threads, threads

fine-grained scheduling at each instruction slows down a thread
even when the thread could go on since it is not causing a stall.

• Furthermore, there might be fewer threads than stages in the
pipeline (actually, this is the usual case), so keeping the CPU busy
is no easy matter.

• Keeping into account these problems, a different approach is
followed in coarse-grained multithreading.

•9

Coarse-grained Multi-Threading

2. Coarse-grained Multithreading: a switch only happens when the
thread in execution causes a stall, thus wasting a clock cycle.

• At this point, a switch is made to another thread. When this thread
in turn causes a stall, a third thread is scheduled (or possibly the
first one is re-scheduled) and so on.

• This approach potentially wastes more clock cycles than the fine-
grained one, because the switch happens only when a stall happens.

• but if there are few active threads (even just two), they can be
enough to keep the CPU busy.

•10

Coarse vs Fine-grained
Multi-Threading

• (a)-(c) three threads with associated stalls (empty slots).
(d) Fine-grained multithreading.
(e) Coarse-grained multi-threading (Tanenbaum, Fig. 8.7)

•11
any error in this schedule?

Coarse vs Fine-grained
Multi-Threading

•12

• In the preceeding drawing, fine-grained multithreading seems to
work better, but this is not always the case.

• Specifically, a switch among threads cannot be carried out without
any waste in clock cycles.

• So, if the instructions of the threads do not cause stalls frequently, a
coarse-grained scheduling can be more convenient than a fine-
grained one, where the context switch overhead is paid at each
clock cycle (this overhead is very small, but never null).

Coarse e Fine-grained
Multi-Threading

•13

• Are Coarse and Fine grained multi-threading similar to concepts
discussed in a standard Operating Systems course ?

Medium-grained Multi-Threading

3. Medium-grained multithreading: an intermediate approach
between fine and coarse - grained multithreading consists of
switching among threads only when the running one is about to
issue an instruction that might cause a long-lasting stall, such as a
load (requesting non-cached data), or a branch.

• The instruction is issued, but the processor carries out the switch to
another thread. With this approach, one spares even the small, one-
cycle waste due to the stall by the executing load (unavoidable in
multithreading coarse-grained).

•14

Multi-Threading

• How can the pipeline know which thread an instruction belongs to?

• In fine-grained MT, the only way is to associate each instruction
with a thread identifier, e.g. the unique ID attached to the thread
within the thread set it belongs to.

• In coarse-grained MT, besides the solution above, the pipeline can
be emptied at each thread switch: in this way, the pipeline only
contains instructions from a single thread.

• The last option is affordable only if the switch happens at intervals
that are much longer than the time required to empty the pipeline.

•15

Multi-Threading

• Finally, all instructions from the executing threads are (as much as
possible) in the instruction cache; otherwise, each context switch
causes a cache miss, and all advantages from threading are lost.

•16

Simultaneous Multi-Threading
and Multiple Issue

• Modern superscalar, multiple issue and dynamic scheduling
pipeline architectures allow to exploit both ILP (instruction level)
and TLP (thread level) parallelism.

• ILP + TLP = Simultaneous Multi-Threading (SMT)

• SMT is convenient since modern multiple-issue CPUs have a
number of functional units that cannot be kept busy with
instructions from a single thread.

• By applying register renaming and dynamic scheduling, instructions
belonging to different threads can be executed concurrently.

•17

Simultaneous Multi-Threading

• In SMT, multiple instructions are issued at each clock cycle,
possibly belonging to different threads; this increases the utilization
of the various CPU resources (Hennessy-Patterson, Fig. 6.44: each
slot/colour couple represents a single instruction in a thread).

•18

1: Superscalar

clock
cycle

2: Coarse MT 3: Fine MT 4: SMT

Issue Slots

Simultaneous Multi-Threading
• In superscalar CPUs with no multithreading, multiple issue can be

useless if there is not enough ILP in each thread, and if a long
lasting stall (a L3 cache miss) freezes the whole processor.

• In coarse-grained MT, long-lasting stalls are hidden by thread
switching, but a poor ILP level in each thread limits CPU resource
exploitation (e.g., not all issue slots available can effectively be
used)

• Even in fine-grained MT, a poor ILP level in each thread limits
CPU resource exploitation.

• SMT: instructions belonging to different threads are (almost
certainly) independent, and by issuing them concurrently, CPU
resources utilization raises.

•19

Simultaneous Multi-Threading
• Even with SMT, it is not always guaranteed to issue the maximum

number of instructions per clock cycle, because of limited number
of available functional units, reservation stations, I-Cache capability
to feed threads with instructions, and shear number of threads.

• Clearly, SMT is viable only if there is a wealth of registers available
for renaming.

• Furthermore, in a CPU supportig speculation, there must be a ROB
(at least logically) distinct for each thread, so that retirement
(instructions commit) is carried out independently by each thread.

•20

Simultaneous Multi-Threading
• Realizing a processor fully exploiting SMT is definitely a complex

task; is it worth doing?

• A simple simulation: a superscalar multithreaded CPU with the
following features:

– a 9-stage pipeline
– 4 general purpose floating point units
– 2 ALUs
– up to 4 load or store per cycle
– 100 integer + 100 FP rename registers
– up to 12 commit per cycle
– 128k + 128k L1 caches
– 16MB L2 cache
– 1k BTB
– 8 contexts for SMT (8 PC, 8 architectural registers)
– up to 8 instruction issued per clock cycle, from 2 different contexts •21

Simultaneous Multi-Threading
• This hypothetical processor has slightly more resources than a

modern real processor; notably, it handles up to 8 concurrent
threads. Would SMT really be beneficial? Look at figures from
benchmarks of concurrent applications: number of retired
instructions per clock cycle (Hennessy-Patterson, Fig. 6.46):

•22

Simultaneous Multi-Threading
• An intriguing question: with multithreading, one usually refers to a

set of “peer threads” whose instructions are concurrently executed
in a multithreaded CPU.

• What about the concurrent execution of instructions from different
processes ?

• Would some specific additional resource be necessary?

•23

Intel Multi-Threading

• Multithreading was first introduced by Intel in Xeon processor in
2002, later in the 3,06 GHz Pentium 4, with code name
hyperthreading. The name is attractive, actually hyperthreading
supports only two threads in SMT mode.

• According to Intel, designers had speculated that multithreading
was the simplest way to increase performance: an increase by 5% of
CPU area would allow to run a second thread, thus effectively using
CPU resources otherwise wasted.

• Intel benchmark suggested an increase of CPU performance by 25%
-- 30%.

•24

Intel Multi-Threading

• To the Operating system, a multithreaded processor is indeed a
double processor, with two CPUs sharing caches and RAM: if two
applications can run independently and share the same address
space, they can be executed in parallel in two threads.

• A movie editing code can use different filters to be applied in each
frame. The code can be structured as two threads, that process
odd/even frames, and that execute in parallel.

•25

Intel Multi-Threading

•26

•
•
•

•
•

•
•
•

•

Intel Multi-Threading

• Since two threads can use the CPU concurrently, it is necessary to
design a strategy that allows both threads to effectively use CPU
resources.

• Intel uses 4 different strategies to share resources between the two
threads.

• Replication. Obviously, some resources have to be replicated, in
order to manage the two threads: two program counters and
registers mapping tables (ISA registers vs rename registers) so that
each thread has an independent set of registers. This replications
accounts for the 5% increase in processor area.

•27

Intel Multi-Threading

• Partitioning. Some hardware resources are rigidly partitioned
between the two threads. Each thread can use exactly half of each
resource. This applies to all buffers (for LOAD, STORE
instructions) and to the ROB (“retirement queue” in Intel
terminology).

• Partitioning can of course reduce the utilization of the partitioned
resources, when a thread does not use its part of the resource, which
could be used by another thread.

•28

Intel Multi-Threading

• Sharing. The hardware resource is completely shared. The first
thread that gets hold of the resources uses it, and the other thread
waits.

• This type of resource management solves the problem due to an
unused resource (if the thread does not need it), since it can be
allocated to the second one. Obviously, the reverse problem arises:
a thread can be slowed down if the required resource is completely
allocated to the other one.

• For this reason, in Intel processor the only resources completely
shared are those available in a great quantity: for them, it is unlikely
that a “starvation” problems arises, e.g. cache lines.

•29

• Threshold sharing. A thread can use dynamically the resource, up
to a given percentage; so, a part remains available for the other task
(possibly less than half).

• The scheduler that dispatches uops to the reservation stations uses
this policy.

•30

Intel Multi-Threading

• Resourse sharing in Pentium 4 pipeline (Tanenabum, Fig. 8.9).

•31

Intel Multi-Threading

• Resourse sharing in Pentium 4 pipeline (Intel source).

•32

Intel Multi-Threading

Intel Technology Journal Q1, 2002

Hyper-Threading Technology Architecture and Microarchitecture 10

Execution Engine in the pipeline flow. The uop queue
is partitioned such that each logical processor has half
the entries. This partitioning allows both logical
processors to make independent forward progress
regardless of front-end stalls (e.g., TC miss) or
execution stalls.

OUT-OF-ORDER EXECUTION ENGINE
The out-of-order execution engine consists of the
allocation, register renaming, scheduling, and execution
functions, as shown in Figure 6. This part of the
machine re-orders instructions and executes them as

quickly as their inputs are ready, without regard to the
original program order.

Allocator
The out-of-order execution engine has several buffers to
perform its re-ordering, tracing, and sequencing
operations. The allocator logic takes uops from the uop
queue and allocates many of the key machine buffers
needed to execute each uop, including the 126 re-order
buffer entries, 128 integer and 128 floating-point
physical registers, 48 load and 24 store buffer entries.
Some of these key buffers are partitioned such that each
logical processor can use at most half the entries.

Rename Queue
Register

Read Execute L1 Cache
Register

Write Retire

Registers

Sched
Uop

Queue

Register
Rename
Register
Rename

Registers
Re-Order

Buffer

Store
Buffer

L1 D-Cache

AllocateAllocate

Figure 6: Out-of-order execution engine detailed pipeline

Specifically, each logical processor can use up to a
maximum of 63 re-order buffer entries, 24 load buffers,
and 12 store buffer entries.

If there are uops for both logical processors in the uop
queue, the allocator will alternate selecting uops from
the logical processors every clock cycle to assign
resources. If a logical processor has used its limit of a
needed resource, such as store buffer entries, the
allocator will signal “stall” for that logical processor and
continue to assign resources for the other logical
processor. In addition, if the uop queue only contains
uops for one logical processor, the allocator will try to
assign resources for that logical processor every cycle to
optimize allocation bandwidth, though the resource
limits would still be enforced.

By limiting the maximum resource usage of key buffers,
the machine helps enforce fairness and prevents
deadlocks.

Register Rename
The register rename logic renames the architectural IA-
32 registers onto the machine’s physical registers. This
allows the 8 general-use IA-32 integer registers to be
dynamically expanded to use the available 128 physical
registers. The renaming logic uses a Register Alias
Table (RAT) to track the latest version of each
architectural register to tell the next instruction(s) where
to get its input operands.

Since each logical processor must maintain and track its
own complete architecture state, there are two RATs,
one for each logical processor. The register renaming
process is done in parallel to the allocator logic
described above, so the register rename logic works on
the same uops to which the allocator is assigning
resources.

Once uops have completed the allocation and register
rename processes, they are placed into two sets of

• "IP"

•

•

• "Trace Cache"

•33

Intel Multi-Threading

•34

ROB
Predict/Fetch Decode

IQ

Alloc
RS

Schedule EX Retire

• Select thread to fetch instructions from
• Select instruction to decode
• Select u-operation to allocate
• Select instruction to retire
• Additional selection points in memory pipeline like
scheduling of MOB entries (memory order buffer)

Intel Multi-Threading

Intel Multi-Threading

•35

 Performance Gain SMT enabled vs disabled

Floating Point 3dsMax* Integer Cinebench* 10POV-Ray* 3.7
beta 25

3DMark*
Vantage* CPUIntel® Core™ i7

Intel Multi-Threading

• Threshold sharing applied at run time requires run time monitoring
of resources utilization; additional hardware is necessary, and some
computational overhead ensues.

• Complete sharing can also cause problems. This is true especially
with cache memory. Sharing cache lines makes cache management
simple, but what happens if both threads require each ¾ of the
cache lines for a speedy execution?

– A high number of cache miss, that would not arise, if only a single thread
were executing (would coarse-grained multithreading be more efficient?)

•36

CPU Multi-Threading
• Intel has temporarely dropped hyper-threading technology in dual

core processors (dual-core processors are absed on an updated
version of P6 microarchitecture, that does not support
multithreading).

• Hyper-threading has been re-introduced since 2008 in Nehalem type
processors.

• Other processors using multithreading are:
– IBM Power 5 (2004) was dual core with 2 SMT;

– IBM Power 7 (2010) 2-8 core with 4 SMT

– UltraSPARC T2 (Niagara) and T3 (Rainbow Fall) have fine-grained
multithreading with 8 threads per core

•37

