
Parallel Architectures

• Introduction
• Multithreading
• Multiprocessors (shared memory architecture)
• Multicomputers (message passing architecture)

•1

Explicit Parallelism
• So far, we considered various ways to exploit the implicit

parallelism embedded in the instructions that make up a
program.

• The programmer conceives a program to solve a given
problem as a sequence of instructions that will be executed
by the CPU one after another

• The programmer ignores (he is entitled to do so) how the
compiler will manage these instructions (static ILP) and
how the CPU will actually execute them (dynamic ILP).

•2

Explicit Parallelism

• What can we do if the program runs too slowly ? Well, we
can surely use a “quicker” CPU, and possibly code in a
better way the program. And once all this has been done?

• The only way is using an architecture that embeds more
computing units; possible, at least some fraction of the
problem can be parallelised.

• If the programmer is aware of the parallel architecture, he
can choose an algorithm that can exploit this new
capability: parallel execution.

•3

Limits in Explicit Parallelism
• Actually, many problems lend themselves to a solution based on a set

of programs running in parallel.

• However, (but for very particular instances) the increase in
performance (speed-up) one can obtain by using multple CPUs to run
many programs in parallel is less than linear in the number of
available CPUs (or cores).

• Indeed, programs running in parallel must synchronize, to share the
data produced by each of them; alternatively, a preliminary common
phase is required, before the actual parallel computations can start: in
either case, there is always a fraction of computation that cannot be
carried out in parallel.

•4

• Let us consider the following compilation command:

– gcc main.c function1.c function2.c –o output

• Let us assume to compile on a mono-processor architecture, with the
following figures:

– 3 seconds to compile main.c

– 2 seconds to compile function1.c

– 1 second to compile function2.c

– 1 second to link object modules (main.o, function1.o, function2.o)

• giving a total of 7 seconds.
•5

Limits in Explicit Parallelism

• With three CPUs, the three sources can be compiled in parallel to
produce the correspoding object modules.

• Once the objects have been generated, they can be linked using one of
the three processors.

• However, linking can start only after all three object codes have been
generated, that is, only after 3 seconds.

• The total time to produce output is 3+1=4 seconds, against 7 seconds
in the mono-processor, with a speed-up of 7/4 = 1.75, with 3
processors !!

• Even if all compilations required 1 second, the speed-up would be 4/2
= 2.

• What happen if the RAM is not shared among the CPUs? •6

Limits in Explicit Parallelism

Limit in Explicit Parallelism
• Computational tasks exhibit a different “outcome” (formally, a

different speed-up) when one tries to solve them by distributing the
work among multiple CPUs (Tanenbaum, Fig. 8.47):

•7

A typical
operational
research problem

a checkboard
game

a 5 speed-up
maximum problem,
whichever the # of
CPUs

Limits in Explicit Parallelism
• Every program consists (also) of a set of sequential operations for

which no parallel execution is possible. Formally:

• Let P be a program run in time T on a single processor, and let f be
the fraction of T due to inherently sequential code, and (1-f) the
fraction due to parallelizable code (Tanenbaum, Fig. 8.48):

•8

Limits in Explicit Parallelism
• The excution time due to the parallelizable fraction changes from

(1-f)T to (1-f)T/n if n processors are available.

• The speed-up is obtained as the ratio of execution time in a single
CPU over execution time on n CPUs:

\

•9

n[fT + (1 - f)T]
nfT + (1 - f)T

fT + (1 - f)T
fT + (1 - f)T/n

nT
T(1 + nf - f)

n
1 + (n-1)f

Amdahl’s Law

speed-up = =

==

Limits in Explicit Parallelism
• Amdahl’s Law states that a perfect speed-up, equal to the number of

available CPUs, is only possible if f = 0.

• As an instance, which fraction of the original computation can be
sequential, if we want a speed-up of 80 with 100 CPUs?

• 80 = 100 /(1 + 99f); f = 20/(80 x 99) = 0.0025252525

• That is, only 0.25% of the original computation time can be due to
sequential code.

• Is Amdhal’s Law valid in single-core architectures?

• Can we think of a “superlinear” speed-up, in actual cases ?

• Amdhal’s Law considers a fixed-size problem – another view point is
running larger problems (Gustavson’s Law to be discussed later)•10

Limits in Explicit Parallelism
• Actually, the main problems with Explicit Parallelism are two:

1) software and 2) hardware.

1. The limit amount of parallelism available in programs,
or at least the amount that can be made explicit and thus used and
deployed.

• Parallel algorithm design is still today a very active research area,
quite because of the potential gains it offers.

2. High costs of processor/memory communication, which can raise
considerably the cost of a cache miss, or the synchronization
between two processes run on different CPUs.

• These costs depend both on the architecture and on the number of
CPUs, and are generally much higher than in a uniprocessor system.

•11

Explicit Parallelism
• Of course, achieving a sub-linear speed-up (e.g. n with 2n

processors), is very welcome in many applications, since CPUs cost
is decreasing.

• The increase in computational power is not the only driving force for
designing multi-CPU Architectures:

a) Having multiple processors raises systems reliability: if one of them
fails, the others can step in and carry out its work.

b) Services that are inherently issued on a geografical scale must be
realized with a distributed architecture. If the system were
centralized in a single node, concurrent accesses to this node would
become a bottleneck and would slow down the service offered,
ultimately making it unavailable.

•12

Explicit Parallelism
• At a coarse scale, we can list three types of explicit Parallel

Architectures (Tanenbaum, Fig. 8.1):

1. Multi-threading (a)

2. Shared-memory systems (b,c)

3. Distributed-memory systems (d,e)

•13

A taxonomy of
computer architectures

•14

Architectures taxonomy
• We have considered different types of architectures, and it is worth

considering some way to classify them.

• Indeed, there exists a famous taxonomy of the various architectures:
it is well known, though it is rough and not precise (it was
conceived back in 1966 !!): Flynn’s taxonomy (Tanenbaum, Fig.
8.20):

•15

Architectures taxonomy
• Flynn’s taxonomy uses two basic concepts: parallelism in

instruction stream, and paralleism in data streams.

• A n CPU system has n program counters, so there are n “instruction
streams” that can execute in parallel.

• A data stream can be thought of as a sequence of data. In a stream,
each data is processed in the sequence it belongs to. There can be
multiple independent streams, with the computation carried out on a
stream being separate and distinct from that carried out on another
stream.

• Data and instruction streams are, to a certain degree, orthogonal,
and there exist 4 possible, different combinations:

•16

Architectures taxonomy
• SISD: Single Instruction (stream) Single Data (stream) it is the

classical uniprocessor architecture, where instructions are executed
one at a time on a single data stream: variables in the program being
executed.

• Owing to ILP, this view if fairly inaccurate (just consider the
operation of a single pipeline), and it is currently correct only for
simple processors in embedded applications, such as Intel 8051.

• Intel 8051 familty processors have no pipeline, (most instructions
take a single clock cycle), they issue and execute instructions in
order, and have no cache.

• They are 8-bit architectures, have a clock frequency of some tens of
MHz, cost10, 20 euro cents, and are by large the processor that sell
the most: some 8 BILLION pieces per year !

•17

Architectures taxonomy
• They are deployed in alarm clocks, in wash machines, in microwave

owens, in cordless phones, in some “electronic” toys, in some
medical appliances, and so on.

• Classifying superscalar, multiple-issue processors in the SISD
category is somewhat dubious, but is common practice. Actually,
modern processors are the off-spring of the classical Von Neumann
architecture

•18

Architectures taxonomy
• MISD: Multiple Instruction (stream) Single Data (stream):

is this a class of architectures that makes any sense? Many authors
think it does not.

• However, some argue that considering modern processors an
instance of SISD architectures is less precise than ascribing them to
the MISD class: the data to be processed flow from one instruction
to the next as the instructions flow within the stages of the pipeline.

•19

Architectures taxonomy
• SIMD: Single Instruction (stream) Multiple Data (stream):

the SIMD model was adopted in one of the first models of parallel
architectures ever proposed, the well known Illiac IV.

• Illiac IV was designed in the mid 60’s and was actually built in
1972: it cost 31 million $ (1972 $) and had a computational power
of some 50 MFLOPS (the initial target was 1 GFLOP).

• Illiac IV is the most famous case of an architectural model
currently almost disappeared, known as array processor: a huge
number of identical processors that execute the same sequence of
instructions on different data streams.

•20

Architectures taxonomy

• There is a second type of SIMD architectures, conceptually very
similar to array processors: vector processors.

• Vector processors work on arrays of data, but a single processor is
in charge of carrying out the operation on all elements in the array.

• These processors did have some success in the “supercomputer”
arena (some CRAY models adopted this architectures), but are
currently declining.

•21

Architectures taxonomy

• The SIMD paradigm has been used also within the
microarchitecture of general purpose processors by extending their
ISA to handle multimedia data. It the so called “multimedia
extensions”.

• But the most notable exploitation of this paradigm is currently in the
graphics processing domain, where GPU (Graphical Processing
Unit) model has produced a specific implementation of SIMD
architecture for handling multiple data streams of graphic objects.

•22

Architectures taxonomy
• MIMD: Multiple Instruction (stream) Multiple Data (stream):

This encompasses all multiprocessor and multicomputer
architectures (from dual core processors, to small UMA systems, up
to clusters such as Google).

• It is worth underlining that Flynn’s taxonomy is really coarse, and
there are architectures that do not fit well in this scheme:

– multithreaded processors : SISD or MIMD?

– general purpose processors with SIMD extensions: where do
they belong?

•23

Architectures taxonomy
• Flynn’s taxonomy (Tanenbaum, Fig. 8.21).

•24

