
Parallel Architectures

• Introduction
• Multithreading
• Multiprocessors (shared memory architecture)
• Multicomputers (message passing architecture)
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Explicit Parallelism
• So far, we considered various ways to exploit the implicit 

parallelism embedded in the instructions that make up a 
program.

• The programmer conceives a program to solve a given 
problem as a sequence of instructions that will be executed 
by the CPU one after another

• The programmer ignores (he is entitled to do so) how the 
compiler will manage these instructions (static ILP) and 
how the CPU will actually execute them (dynamic ILP). 
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Explicit Parallelism

• What can we do if the program runs too slowly ? Well, we 
can surely use a “quicker” CPU, and possibly code in a 
better way the program. And once all this has been done?

• The only way is using an architecture that embeds more 
computing units; possible, at least some fraction of the 
problem can be parallelised.

• If the programmer is aware of the parallel architecture, he 
can choose an algorithm that can exploit this new 
capability: parallel execution.
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Limits in Explicit Parallelism
• Actually, many problems lend themselves to a solution based on a set 

of programs running in parallel.

• However, (but for very particular instances) the increase in 
performance (speed-up) one can obtain by using multple CPUs to run 
many programs in parallel is less than linear in the number of 
available CPUs (or cores). 

• Indeed, programs running in parallel must synchronize, to share the 
data produced by each of them; alternatively, a preliminary common 
phase is required, before the actual parallel computations can start: in 
either case, there is always a fraction of computation that cannot be 
carried out in parallel.
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• Let us consider the following compilation command:

– gcc main.c function1.c function2.c –o output

• Let us assume to compile on a mono-processor architecture, with the 
following figures: 

– 3 seconds to compile main.c

– 2 seconds to compile function1.c

– 1 second to compile function2.c

– 1 second to link object modules (main.o, function1.o, function2.o)

• giving a total of 7 seconds.
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• With three CPUs, the three sources can be compiled in parallel to 
produce the correspoding object modules.

• Once the objects have been generated, they can be linked using one of 
the three processors.

• However, linking can start only after all three object codes have been 
generated, that is, only after 3 seconds.

• The total time to produce output is 3+1=4 seconds, against 7 seconds 
in the mono-processor, with a speed-up of 7/4 = 1.75, with 3
processors !!

• Even if all compilations required 1 second, the speed-up would be 4/2 
= 2.

• What happen if the RAM is not shared among the CPUs? •6
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Limit in Explicit Parallelism
• Computational tasks exhibit a different “outcome” (formally, a 

different speed-up) when one tries to solve them by distributing the 
work among multiple CPUs (Tanenbaum, Fig. 8.47): 
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Limits in Explicit Parallelism
• Every program consists (also) of a set of sequential operations for 

which no parallel execution is possible. Formally:

• Let P be a program run in time T on a single processor, and let f  be 
the fraction of T due to inherently sequential code, and (1-f) the 
fraction due to parallelizable code (Tanenbaum, Fig. 8.48):
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Limits in Explicit Parallelism
• The excution time due to the parallelizable fraction changes from

(1-f)T to (1-f)T/n if n processors are available.

• The speed-up is obtained as the ratio of execution time in a single 
CPU over execution time on n CPUs:

\
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Limits in Explicit Parallelism
• Amdahl’s Law states that a perfect speed-up, equal to the number of 

available CPUs, is only possible if f = 0.

• As an instance, which fraction of the original computation can be 
sequential, if we want a speed-up of 80 with 100 CPUs?

• 80 = 100 /(1 + 99f);     f = 20/(80 x 99) = 0.0025252525

• That is, only 0.25% of the original computation time can be due to 
sequential code. 

• Is Amdhal’s Law valid in single-core architectures?

• Can we think of a “superlinear” speed-up, in actual cases ?

• Amdhal’s Law considers a fixed-size problem – another view point is 
running larger problems (Gustavson’s Law to be discussed later)•10



Limits in Explicit Parallelism
• Actually, the main problems with Explicit Parallelism are two:        

1) software and 2) hardware.

1. The limit amount of parallelism available in programs, 
or at least the amount that can be made explicit and thus used and 
deployed.

• Parallel algorithm design is still today a very active research area, 
quite because of the potential gains it offers. 

2. High costs of processor/memory communication, which can raise 
considerably the cost of a cache miss, or the synchronization 
between two processes run on different CPUs.

• These costs depend both on the architecture and on the number of 
CPUs, and are generally much higher than in a uniprocessor system.
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Explicit Parallelism
• Of course, achieving a sub-linear speed-up (e.g. n with 2n 

processors), is very welcome in many applications, since CPUs cost 
is decreasing.

• The increase in computational power is not the only driving force for 
designing multi-CPU Architectures:

a) Having multiple processors raises systems reliability: if one of them 
fails, the others can step in and carry out its work.

b) Services that are inherently issued on a geografical scale must be 
realized with a distributed architecture. If the system were 
centralized in a single node, concurrent accesses to this node would 
become a bottleneck and would slow down the service offered, 
ultimately making it unavailable.
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Explicit Parallelism
• At a coarse scale, we can list three types of explicit Parallel 

Architectures (Tanenbaum, Fig. 8.1):

1. Multi-threading (a)

2. Shared-memory systems (b,c)

3. Distributed-memory systems (d,e)
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A taxonomy of 
computer architectures
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Architectures taxonomy
• We have considered different types of architectures, and it is worth 

considering some way to classify them.

• Indeed, there exists a famous taxonomy of the various architectures: 
it is well known, though it is rough and not precise (it was 
conceived back in 1966 !!): Flynn’s taxonomy (Tanenbaum, Fig. 
8.20):
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Architectures taxonomy
• Flynn’s taxonomy uses two basic concepts: parallelism in 

instruction stream, and paralleism in data streams.

• A n CPU system has n program counters, so there are n “instruction 
streams” that can execute in parallel.

• A data stream can be thought of as a sequence of data. In a stream, 
each data is processed in the sequence it belongs to. There can be 
multiple independent streams, with the computation carried out on a 
stream being separate and distinct from that carried out on another 
stream.

• Data and instruction streams are, to a certain degree, orthogonal, 
and there exist 4 possible, different combinations:
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Architectures taxonomy
• SISD: Single Instruction (stream) Single Data (stream) it is the 

classical uniprocessor architecture, where instructions are executed 
one at a time on a single data stream: variables in the program being 
executed.

• Owing to ILP, this view if fairly inaccurate (just consider the 
operation of a single pipeline), and it is currently correct only for 
simple processors in embedded applications, such as Intel 8051.

• Intel 8051 familty processors have no pipeline, (most instructions 
take a single clock cycle), they issue and execute instructions in 
order, and have no cache.

• They are 8-bit architectures, have a clock frequency of some tens of 
MHz, cost10, 20 euro cents, and are by large the processor that sell 
the most: some 8 BILLION pieces per year ! 
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Architectures taxonomy
• They are deployed in alarm clocks, in wash machines, in microwave 

owens, in cordless phones, in some “electronic” toys, in some 
medical appliances, and so on.

• Classifying superscalar, multiple-issue processors in the SISD 
category is somewhat dubious, but is common practice. Actually, 
modern processors are the off-spring of the classical Von Neumann 
architecture
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Architectures taxonomy
• MISD: Multiple Instruction (stream) Single Data (stream):

is this a class of architectures that makes any sense? Many authors 
think it does not.

• However, some argue that considering modern processors an 
instance of SISD architectures is less precise than ascribing them to 
the MISD class: the data to be processed flow from one instruction 
to the next as the instructions flow within the stages of the pipeline.
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Architectures taxonomy
• SIMD: Single Instruction (stream) Multiple Data (stream):

the SIMD model was adopted in one of the first models of parallel 
architectures ever proposed, the well known Illiac IV.

• Illiac IV was designed in the mid 60’s and was actually built in 
1972: it cost 31 million $ (1972 $) and had a computational power 
of some 50 MFLOPS (the initial target was 1 GFLOP).

• Illiac IV is the most famous case of an architectural model  
currently almost disappeared, known as array processor: a huge 
number of identical processors that execute the same sequence of 
instructions on different data streams.
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Architectures taxonomy

• There is a second type of SIMD architectures, conceptually very 
similar to array processors: vector processors.

• Vector processors work on arrays of data, but a single processor is 
in charge of carrying out the operation on all elements in the array.

• These processors did have some success in the “supercomputer” 
arena (some CRAY models adopted this architectures), but are 
currently declining.
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Architectures taxonomy

• The SIMD paradigm has been used also within the 
microarchitecture of general purpose processors by extending their 
ISA to handle multimedia data. It the so called “multimedia
extensions”.

• But the most notable exploitation of this paradigm is currently in the 
graphics processing domain, where GPU (Graphical Processing 
Unit) model has produced a specific implementation of SIMD 
architecture for handling multiple data streams of graphic objects.
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Architectures taxonomy
• MIMD: Multiple Instruction (stream) Multiple Data (stream):

This encompasses all multiprocessor and multicomputer 
architectures (from dual core processors, to small UMA systems, up 
to clusters such as Google).

• It is worth underlining that Flynn’s taxonomy is really coarse, and 
there are architectures that do not fit well in this scheme:

– multithreaded processors : SISD or MIMD?

– general purpose processors with SIMD extensions: where do 
they belong?
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Architectures taxonomy
• Flynn’s taxonomy (Tanenbaum, Fig. 8.21).
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