

Computer Architecture A Quantitative Approach, Fifth Edition

Chapter 2

Memory Hierarchy Design

Memory Hierarchy Basics

Six basic cache optimizations:

- Larger block size
 - Reduces compulsory misses
 - Increases capacity and conflict misses, increases miss penalty
- Larger total cache capacity to reduce miss rate
 - Increases hit time, increases power consumption
- Higher associativity
 - Reduces conflict misses
 - Increases hit time, increases power consumption
- Higher number of cache levels
 - Reduces overall memory access time
- Giving priority to read misses over writes
 - Reduces miss penalty
- Avoiding address translation in cache indexing
 - Reduces hit time

Ten Advanced Optimizations

- Small and simple first level caches
 - Critical timing path:
 - addressing tag memory, then
 - comparing tags, then
 - selecting correct set
 - Direct-mapped caches can overlap tag compare and transmission of data
 - Lower associativity reduces power because fewer cache lines are accessed

L1 Size and Associativity

Access time vs. size and associativity

Advanced Optimizations

L1 Size and Associativity

Energy per read vs. size and associativity

Way Prediction

- To improve hit time, predict the way to pre-set mux
 - Mis-prediction gives longer hit time
 - Prediction accuracy
 - > 90% for two-way
 - > 80% for four-way
 - I-cache has better accuracy than D-cache
 - First used on MIPS R10000 in mid-90s
 - Used on ARM Cortex-A8
- Extend to predict block as well
 - "Way selection"
 - Increases mis-prediction penalty

Pipelining Cache

- Pipeline cache access to improve bandwidth
 - Examples:
 - Pentium: 1 cycle
 - Pentium Pro Pentium III: 2 cycles
 - Pentium 4 Core i7: 4 cycles
- Increases branch mis-prediction penalty
- Makes it easier to increase associativity

Nonblocking Caches

- Allow hits before previous misses complete
 - "Hit under miss"
 - "Hit under multiple miss"
- L2 must support this
- In general, processors can hide L1 miss penalty but not L2 miss penalty

Multibanked Caches

- Organize cache as independent banks to support simultaneous access
 - ARM Cortex-A8 supports 1-4 banks for L2
 - Intel i7 supports 4 banks for L1 and 8 banks for L2

Interleave banks according to block address

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64 bytes per blocks, each of these addresses would be multiplied by 64 to get byte addressing.

Critical Word First, Early Restart

- Critical word first
 - Request missed word from memory first
 - Send it to the processor as soon as it arrives
- Early restart
 - Request words in normal order
 - Send missed work to the processor as soon as it arrives
- Effectiveness of these strategies depends on block size and likelihood of another access to the portion of the block that has not yet been fetched

Merging Write Buffer

- When storing to a block that is already pending in the write buffer, update write buffer
- Reduces stalls due to full write buffer
- Do not apply to I/O addresses

No merging

Write merging

Compiler Optimizations

- Loop Interchange
 - Swap nested loops to access memory in sequential order
- Blocking
 - Instead of accessing entire rows or columns, subdivide matrices into blocks
 - Requires more memory accesses but improves locality of accesses

The architecture from the programmer's view point

10000x10000 array, Intel Core 2 Duo @ 2.8 Ghz

int sum1(int** m, int n) {
 int i,j,sum=0;
 for (i=0; i<n;i++)
 for (j=0; j<n; j++)
 sum += m[i][j];
 returm sum;
}</pre>

int sum2(int** m, int n) {
 int i,j,sum=0;
 for (i=0; i<n;i++)
 for (j=0; j<n; j++)
 sum += m[j][i];
 returm sum;</pre>

0.4 seconds

1,7 seconds (4.2 times slower !!)

13

13

Course outline

Loop interchange

Assume m[,] is allocated in *row-major order*

int sum2(int** m, int n) {
 int i,j,sum=0;
 for (i=0; i<n;i++)
 for (j=0; j<n; j++)
 sum += m[j][i];
 returm sum;
}</pre>

int sum2(int** m, int n) {
 int i,j,sum=0;
 for (j=0; j<n;j++)
 for (i=0; i<n; i++)
 sum += m[j][i];
 returm sum;
}</pre>

wrong

correct

Compiler Optimizations

Compiler Optimizations

Hardware Prefetching

Fetch two blocks on miss (include next sequential block)

Pentium 4 Pre-fetching

Compiler Prefetching

- Insert prefetch instructions before data is needed
- Non-faulting: prefetch doesn't cause exceptions
- Register prefetch
 - Loads data into register
- Cache prefetch
 - Loads data into cache
- Combine with loop unrolling and software pipelining

Summary

Technique	Hit time	Band- width	Miss penalty	Miss rate	Power consumption	Hardware cost complexity	/ Comment
Small and simple caches	+			_	+	0	Trivial; widely used
Way-predicting caches	+				+	1	Used in Pentium 4
Pipelined cache access	_	+				1	Widely used
Nonblocking caches		+	+			3	Widely used
Banked caches		+			+	1	Used in L2 of both i7 and Cortex-A8
Critical word first and early restart			+			2	Widely used
Merging write buffer			+			1	Widely used with write through
Compiler techniques to reduce cache misses				+		0	Software is a challenge, but many compilers handle common linear algebra calculations
Hardware prefetching of instructions and data			+	+	_	2 instr., 3 data	Most provide prefetch instructions; modern high- end processors also automatically prefetch in hardware.
Compiler-controlled prefetching			+	+		3	Needs nonblocking cache; possible instruction overhead; in many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power consumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, – means it hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and 3 being a challenge.

