
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics
n Six basic cache optimizations:

n Larger block size
n Reduces compulsory misses
n Increases capacity and conflict misses, increases miss penalty

n Larger total cache capacity to reduce miss rate
n Increases hit time, increases power consumption

n Higher associativity
n Reduces conflict misses
n Increases hit time, increases power consumption

n Higher number of cache levels
n Reduces overall memory access time

n Giving priority to read misses over writes
n Reduces miss penalty

n Avoiding address translation in cache indexing
n Reduces hit time

Introduction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Ten Advanced Optimizations
n Small and simple first level caches

n Critical timing path:
n addressing tag memory, then
n comparing tags, then
n selecting correct set

n Direct-mapped caches can overlap tag compare and
transmission of data

n Lower associativity reduces power because fewer cache
lines are accessed

Advanced O
ptim

izations

4Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Access time vs. size and associativity

Advanced O
ptim

izations

5Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Energy per read vs. size and associativity

Advanced O
ptim

izations

6Copyright © 2012, Elsevier Inc. All rights reserved.

Way Prediction
n To improve hit time, predict the way to pre-set mux

n Mis-prediction gives longer hit time
n Prediction accuracy

n > 90% for two-way
n > 80% for four-way
n I-cache has better accuracy than D-cache

n First used on MIPS R10000 in mid-90s
n Used on ARM Cortex-A8

n Extend to predict block as well
n “Way selection”
n Increases mis-prediction penalty

Advanced O
ptim

izations

7Copyright © 2012, Elsevier Inc. All rights reserved.

Pipelining Cache
n Pipeline cache access to improve bandwidth

n Examples:
n Pentium: 1 cycle
n Pentium Pro – Pentium III: 2 cycles
n Pentium 4 – Core i7: 4 cycles

n Increases branch mis-prediction penalty
n Makes it easier to increase associativity

Advanced O
ptim

izations

8Copyright © 2012, Elsevier Inc. All rights reserved.

Nonblocking Caches
n Allow hits before

previous misses
complete
n “Hit under miss”
n “Hit under multiple

miss”
n L2 must support this
n In general, processors

can hide L1 miss
penalty but not L2 miss
penalty

Advanced O
ptim

izations

9Copyright © 2012, Elsevier Inc. All rights reserved.

Multibanked Caches
n Organize cache as independent banks to support

simultaneous access
n ARM Cortex-A8 supports 1-4 banks for L2
n Intel i7 supports 4 banks for L1 and 8 banks for L2

n Interleave banks according to block address

Advanced O
ptim

izations

10Copyright © 2012, Elsevier Inc. All rights reserved.

Critical Word First, Early Restart
n Critical word first

n Request missed word from memory first
n Send it to the processor as soon as it arrives

n Early restart
n Request words in normal order
n Send missed work to the processor as soon as it

arrives

n Effectiveness of these strategies depends on
block size and likelihood of another access to the
portion of the block that has not yet been fetched

Advanced O
ptim

izations

11Copyright © 2012, Elsevier Inc. All rights reserved.

Merging Write Buffer
n When storing to a block that is already pending in the

write buffer, update write buffer
n Reduces stalls due to full write buffer
n Do not apply to I/O addresses

Advanced O
ptim

izations

No merging

Write merging

12Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Optimizations
n Loop Interchange

n Swap nested loops to access memory in sequential
order

n Blocking
n Instead of accessing entire rows or columns, subdivide

matrices into blocks
n Requires more memory accesses but improves locality

of accesses

Advanced O
ptim

izations

13

Course outline
The architecture from the programmer’s view point

10000x10000 array, Intel Core 2 Duo @ 2.8 Ghz

13

int sum1(int** m, int n) {
int i,j,sum=0;
for (i=0; i<n;i++)
for (j=0; j<n; j++)
sum += m[i][j];

returm sum;
}

int sum2(int** m, int n) {
int i,j,sum=0;
for (i=0; i<n;i++)
for (j=0; j<n; j++)
sum += m[j][i];

returm sum;
}

0.4 seconds 1,7 seconds
(4.2 times slower !!)

14

Course outline
Loop interchange

Assume m[,] is allocated in row-major order

14

int sum2(int** m, int n) {
int i,j,sum=0;
for (j=0; j<n;j++)
for (i=0; i<n; i++)
sum += m[j][i];

returm sum;
}

wrong

int sum2(int** m, int n) {
int i,j,sum=0;
for (i=0; i<n;i++)
for (j=0; j<n; j++)
sum += m[j][i];

returm sum;
}

correct

15Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Optimizations
Advanced O

ptim
izations

White: not yet accessed
Light gray: old
Dark gray: recent

16Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Optimizations
Advanced O

ptim
izations

X initilized to 0
B: Blocking factor

17Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware Prefetching
n Fetch two blocks on miss (include next sequential

block)

Advanced O
ptim

izations

Pentium 4 Pre-fetching

18Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Prefetching
n Insert prefetch instructions before data is needed
n Non-faulting: prefetch doesn’t cause exceptions

n Register prefetch
n Loads data into register

n Cache prefetch
n Loads data into cache

n Combine with loop unrolling and software
pipelining

Advanced O
ptim

izations

19Copyright © 2012, Elsevier Inc. All rights reserved.

Summary
Advanced O

ptim
izations

