Computer Architecture

A Quantitative Approach, Fifth Edition

Chapter 2

COMPUTER
ARCHITECTURE

Memory Hierarchy Design

Memory Hierarchy Basics

uonoNPOU|

s SiX basic cache optimizations:

» Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty

» Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption

Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption

Higher number of cache levels
= Reduces overall memory access time

Giving priority to read misses over writes
= Reduces miss penalty

Avoiding address translation in cache indexing
= Reduces hit time

| Ten Advanced Optimizations

» Small and simple first level caches
= Critical timing path:

= addressing tag memory, then
= comparing tags, then
= Selecting correct set
= Direct-mapped caches can overlap tag compare and
transmission of data

suoneziwndO pasueApy

= Lower associativity reduces power because fewer cache
lines are accessed

| L1 Size and Associativity

900 ~

Access time in picrosecornds

800

700

600

500

400 -

300

200

100 -

0 -

m 1-way o 2-way
m 4-way m 8-way

suoneziwndO pasueApy

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Access time vs. size and associativity

| L1 Size and Associativity

0.5~

M 1-way [2-way
M 4-way O 8-way

0.45 -+

=
I
1

=
g
suoneziwndO pasueApy

o
w
I

0.25 -+

O
o

0.15 -+

Energy per read in nano joules

o
-

0.05 -

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Energy per read vs. size and associativity

| Way Prediction

= [o improve hit time, predict the way to pre-set mux
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way

= > 80% for four-way
= |-cache has better accuracy than D-cache

s First used on MIPS R10000 in mid-90s
s Used on ARM Cortex-A8

suoneziwndO pasueApy

s Extend to predict block as well

= “Way selection”
= Increases mis-prediction penalty

| Pipelining Cache

= Pipeline cache access to improve bandwidth

= Examples:
= Pentium: 1 cycle
= Pentium Pro — Pentium lll: 2 cycles
= Pentium 4 — Core i7: 4 cycles

suoneziwndO pasueApy

= |ncreases branch mis-prediction penalty
= Makes it easier to increase associativity

Nonblocking Caches

= Allow hits before
previous misses
complete

= Hit under miss”

« Hit under multiple
miss”

s L2 must support this

= In general, processors
can hide L1 miss
penalty but not L2 miss
penalty

Ratio of cache miss penalty

—jl— Hit-under-1-miss
— A Hit-under-2-misses | ..
—@— Hit-under-64-misses

[
0% PP e e A P TP
¢ & OF X FF S8R & D F & O R AP P
CFEFANFT I TR & P> T @ @0 S
v@\o“ep T FEE ° L BT D SN
2 T ¥ & &

suoneziwndO pasueApy

| Multibanked Caches

s Organize cache as independent banks to support
simultaneous access

= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

suoneziwndO pasueApy

= |Interleave banks according to block address

Block Block Block Block

address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

| Critical Word First, Early Restart

s Critical word first
= Request missed word from memory first
= Send it to the processor as soon as it arrives

= Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives

suoneziwndO pasueApy

s Effectiveness of these strategies depends on
block size and likelihood of another access to the
portion of the block that has not yet been fetched

Merging Write Buffer

= \When storing to a block that is already pending in the
write buffer, update write buffer

= Reduces stalls due to full write buffer
= Do not apply to I/O addresses

suoneziwndO pasueApy

Write address ~ V v M v
100 1 | Mem[100] | O 0 0
108 1 | Mem[108] | 0 0 0 NO merging
116 1 | Mem[116] | 0 0 0
124 1 | Mem[124] | o 0 0

Write address V \' \% \%

100 1 | Mem[100] [1 | Mem[108] | 1 | Mem[116] | 1 | Mem[124]

Write merging

>
| Compiler Optimizations
@
= Loop Interchange g
s Swap nested loops to access memory in sequential =
order =
= Blocking

» Instead of accessing entire rows or columns, subdivide
matrices into blocks

= Requires more memory accesses but improves locality
of accesses

‘ Course outline

The architecture from the programmer’s view point

10000x10000 array, Intel Core 2 Duo @ 2.8 Ghz

int sum1(int*™* m, int n) { int sum2(int™* m, int n) {
Int i,j,sum=0; int i,j,sum=0;
for (i=0; i<n;i++) for (i=0; i<n;i++)
for (j=0; j<n; j++) for (j=0; j<n; j*++)
sum += m{[i][j]; sum += m[j][i];
returm sum; returm sum;
} }
0.4 seconds 1,7 seconds

(4.2 times slower !!)

| Course outline

Loop interchange

Assume m[,] is allocated in row-major order

int sum2(int** m, intn) { int sum2(int** m, int n) {

int i,j,sum=0; int i,j,sum=0;
for (i=0; i<n;i++) for (j=0; j<n;j++)
for (j=0; j<n; j++) for (i=0; i<n; i++)
sum += m[j][i]; sum += m[j][i];
returm sum:; returm sum:;
} }

wrong correct

Compiler Optimizations

White: not yet accessed

suoneziwndO pasueApy

for (i = 0; i <N; i = i+1) Light gray: old
for (j =0; j <N; j = j+l) Dark gray: recent
{r =03
for (k = 0; k <N; k =k + 1)
r=r + y[il[kl*z[k][J];
x[11[3] = r;
bs
j k J
X y -

a b W N =+ O

Compiler Optimizations

/* After */ N S X initilized to 0
for (jj = 05 jj < N; jj = jj+B) B: Blocking factor
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i <N; i = i+l)
for (j = jjs j <min(jj+B,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B,N); k = k + 1)
r=r+ y[illk]*z[k][i];

x[11[J] = x[i]1[3] + r;
}s

suoneziwndO pasueApy

Hardware Prefetching

s Fetch two blocks on miss (include next sequential
block)

suoneziwndO pasueApy

2.20
2.00 1.97
1=
g 1.80
g !
=4
g
o 1.60 -
= 1.49
- 1.45
5 1.40- . 1.40
D n
o 1.26 fE==
1.20 1.21
1] I I I I
1.00 I 1 I 1 1 T I I 1 1 1
gap mcf fam3d wupwise galgel facerec swim applu lucas mgrid equake
SPECint2000 SPEC{p2000

Pentium 4 Pre-fetching

| Compiler Prefetching

» Insert prefetch instructions before data is needed
= Non-faulting: prefetch doesn’t cause exceptions

suoneziwndO pasueApy

s Register prefetch
» Loads data into register

s Cache prefetch
s Loads data into cache

= Combine with loop unrolling and software
pipelining

summary

Hit Band- Miss Miss Power Hardware cost/
Technique time width penalty rate consumption complexity Comment
Small and simple + - + 0 Trivial; widely used
caches
Way-predicting caches + + 1 Used in Pentium 4
Pipelined cache access - + 1 Widely used
Nonblocking caches + + 3 Widely used
Banked caches + + 1 Used in L2 of both i7 and

suoneziwndO pasueApy

Cortex-A8

Critical word first + 2 Widely used

and early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to + 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data imstructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled + + 3 Needs nonblocking cache:

prefetching possible instruction overhead:
in many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, - means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.

VI<

MORGAN KAUFMANN

