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Memory Hierarchy Basics
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s SiX basic cache optimizations:

» Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty

» Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption

Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption

Higher number of cache levels
= Reduces overall memory access time

Giving priority to read misses over writes
= Reduces miss penalty

Avoiding address translation in cache indexing
= Reduces hit time




| Ten Advanced Optimizations

» Small and simple first level caches
= Critical timing path:

= addressing tag memory, then
= comparing tags, then
= Selecting correct set
= Direct-mapped caches can overlap tag compare and
transmission of data
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= Lower associativity reduces power because fewer cache
lines are accessed




| L1 Size and Associativity
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Access time vs. size and associativity




| L1 Size and Associativity
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| Way Prediction

= [o improve hit time, predict the way to pre-set mux
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way

= > 80% for four-way
= |-cache has better accuracy than D-cache

s First used on MIPS R10000 in mid-90s
s Used on ARM Cortex-A8
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s Extend to predict block as well

= “Way selection”
= Increases mis-prediction penalty




| Pipelining Cache

= Pipeline cache access to improve bandwidth

= Examples:
= Pentium: 1 cycle
= Pentium Pro — Pentium lll: 2 cycles
= Pentium 4 — Core i7: 4 cycles
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= |ncreases branch mis-prediction penalty
= Makes it easier to increase associativity




Nonblocking Caches

= Allow hits before
previous misses
complete

= Hit under miss”

« Hit under multiple
miss”

s L2 must support this

= In general, processors
can hide L1 miss
penalty but not L2 miss
penalty

Ratio of cache miss penalty
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| Multibanked Caches

s Organize cache as independent banks to support
simultaneous access

= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2
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= |Interleave banks according to block address

Block Block Block Block

address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.




| Critical Word First, Early Restart

s Critical word first
= Request missed word from memory first
= Send it to the processor as soon as it arrives

= Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives
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s Effectiveness of these strategies depends on
block size and likelihood of another access to the
portion of the block that has not yet been fetched




Merging Write Buffer

= \When storing to a block that is already pending in the
write buffer, update write buffer

= Reduces stalls due to full write buffer
= Do not apply to I/O addresses
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Write address ~ V v M v
100 1 | Mem[100] | O 0 0
108 1 | Mem[108] | 0 0 0 NO merging
116 1 | Mem[116] | 0 0 0
124 1 | Mem[124] | o 0 0

Write address V \' \% \%

100 1 | Mem[100] [ 1 | Mem[108] | 1 | Mem[116] | 1 | Mem[124]

Write merging




>
| Compiler Optimizations
@
= Loop Interchange g
s Swap nested loops to access memory in sequential =
order =
= Blocking

» Instead of accessing entire rows or columns, subdivide
matrices into blocks

= Requires more memory accesses but improves locality
of accesses




‘ Course outline

The architecture from the programmer’s view point

10000x10000 array, Intel Core 2 Duo @ 2.8 Ghz

int sum1(int*™* m, int n) { int sum2(int™* m, int n) {
Int i,j,sum=0; int i,j,sum=0;
for (i=0; i<n;i++) for (i=0; i<n;i++)
for (j=0; j<n; j++) for (j=0; j<n; j*++)
sum += m{[i][j]; sum += m[j][i];
returm sum; returm sum;
} }
0.4 seconds 1,7 seconds

(4.2 times slower !!)




| Course outline

Loop interchange

Assume m[,] is allocated in row-major order

int sum2(int** m, intn) {  int sum2(int** m, int n) {

int i,j,sum=0; int i,j,sum=0;
for (i=0; i<n;i++) for (j=0; j<n;j++)
for (j=0; j<n; j++) for (i=0; i<n; i++)
sum += m[j][i]; sum += m[j][i];
returm sum:; returm sum:;
} }

wrong correct




Compiler Optimizations

White: not yet accessed
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for (i = 0; i <N; i = i+1) Light gray: old
for (j =0; j <N; j = j+l) Dark gray: recent
{r =03
for (k = 0; k <N; k =k + 1)
r=r + y[il[kl*z[k][J];
x[11[3] = r;
bs
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Compiler Optimizations

/* After */ N S X initilized to 0
for (jj = 05 jj < N; jj = jj+B) B: Blocking factor
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i <N; i = i+l)
for (j = jjs j <min(jj+B,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B,N); k = k + 1)
r=r+ y[illk]*z[k][i];

x[11[J] = x[i]1[3] + r;
}s
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Hardware Prefetching

s Fetch two blocks on miss (include next sequential
block)
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Pentium 4 Pre-fetching




| Compiler Prefetching

» Insert prefetch instructions before data is needed
= Non-faulting: prefetch doesn’t cause exceptions
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s Register prefetch
» Loads data into register

s Cache prefetch
s Loads data into cache

= Combine with loop unrolling and software
pipelining




summary

Hit Band- Miss Miss Power Hardware cost/
Technique time width penalty rate consumption complexity Comment
Small and simple + - + 0 Trivial; widely used
caches
Way-predicting caches + + 1 Used in Pentium 4
Pipelined cache access - + 1 Widely used
Nonblocking caches + + 3 Widely used
Banked caches + + 1 Used in L2 of both i7 and
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Cortex-A8

Critical word first + 2 Widely used

and early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to + 0 Software is a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data imstructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled + + 3 Needs nonblocking cache:

prefetching possible instruction overhead:
in many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, - means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.

VI<

MORGAN KAUFMANN




