
Basic concepts in
CACHING

• Cache basic operation

• Direct-Mapped and Set-Associative cache 

• Multiple-level caching
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CPU and main memory

• Data exchange between CPU and RAM is a critical issue for 
computer performance.

• On a historical basis, since the very first computer, main 
memory has always been slower the CPU, and the gap has 
widened in time.

• Moreover, data and instructions between CPU and RAM 
have to transit through the bus, which introduces a further 
delay. 2



CPU and main memory
• Performance ratio of CPU vs RAM in time, with ratio 1 in 1980 

(Hennessy-Patterson, Fig. 5.2). RAM increase: ~ 7% per year. CPU: 
~25% per year until 1986, ~52% until 2000, ~52% up to 2005, 0% 
later .
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CPU and main memory

• Clearly, it is useless building ever speedier and 
sophisticated processors, if  instructions to be executed and 
data to be worked on cannot be fetched as quickly.

• In datapaths considered so far, the assumption was that the 
Instruction Memory and the Data Memory would run at the 
same speed as the other pipeline components.

• This assumptions actually requires a very complex system 
to manage information flow between CPU and RAM.
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CPU and main memory
• The basic idea to overcome the problem of a slow RAM is using a 

hierarchy of memories, each level speedier (and  more expensive) and 
smaller, the closer it is to CPU, to feed the CPU with the required 
data.

• This is the basic technique in caching, applied to all CPUs and to 
general purpose architectures.

Memory 
technology

Typical access time Gbyte cost (in $) in 
2014

SRAM 0.5 – 5 ns 4000 – 10000

DRAM 50 – 70 ns 100 – 200

SSD 0,1 ms 0,45

HDD 2,9 – 12 ms 0,05 – 0,1 
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Caching

• The caching technique is not typical of the CPU-RAM 
relationship, it is very basic and applies to the whole 
memory subsystem in a computer: 

– Registers act as a cache to the actual hw cache

– The hw cache acts as a cache to RAM

– RAM acts as a cache to the hard disk (virtual memory)

– The hard disk acts as a cache to slower magnetic devices
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Caching
• Here is a sound relationship among memories, capacities 

and speed (Hennessy-Patterson, Fig. 5.1):
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Caching
• A more detailed case: server and PMD (H-P5, Fig. 2.1):
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Caching

• The concept of the cache was born together with that of 
computer:

• Ideally, one would desire an indefinitely large memory 
capacity such that any particular...word would be 
immediately available...We are forced to recognize the 
possibility of constructing a hierarchy of memories, each 
which has greater capacity than the preceding  but which is 
less quickly accessible

A. Burks, H. Goldstine, J. von Neumann
Preliminary Discussion of the logical Design of
Electronic Computing Instrument (1946)
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Caching

• Even if the cache concept dates as early as the Von Neuman 
type of computer, only in the late 60s were produced the 
first CPU equipped with a true cache.

• The basic idea is well understood: a cache is a small, but 
speedy memory holding part of the data available in RAM.

• If data and instructions required by the CPU are found to a 
great percentage in the cache, the performance penalty due 
to slow access to RAM is reduced dramatically. 
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Caching
• Current CPUs have separate caches for data and for instructions. With 

this architecture, in a pipelined datapath, it is possible, within the 
same clock cycle: 

– to fetch an instruction from the instruction cache (I-cache), that we 
have so far called the Instruction Memory, and 

– to load/to store data (for a different instruction) from/to the data 
cache (D-cache), that we have so far called Data Memory.

• I-cache and D-cache together are the first-level cache (L1).

• Most processors have a second-level cache (L2) as well, and there are 
even processors with a third-level cache (L3).
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Cache and locality
• Caches yield great advantages because the principle of 

locality holds in most cases, in two modes:

• Spatial locality: 

– Memory items at addresses near items just referenced will be 
referenced in close time (as an instance, instructions are executed 
in sequence, and array elements are read/written in sequence as 
well).

• Temporal Locality:

– Memory items recently addressed are likely to be referenced again 
in the near future (e.g. instructions and variables within a loop). 
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Cache and locality
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X & Y Space locality: current addresses

a

a     Temporal locality: same addresses

Example: convolution of signal X with filter a into output Y

– next address



Cache basic operation
• N.B. Here we only consider read operations from RAM. Later we will 

cover also operations involving a modification of the data.

• For the purpose of operating with a cache, RAM is split into fixed-
size blocks name cache lines (or simply lines) or cache blocks (or 
simply blocks). 

– A block contains a fixed number of consecutive bytes of RAM (4 
to 256, according to implementations, always a power of 2)

• Blocks are numbered consecutively starting from 0, so with 32-byte 
blocks we have:

– block 0: RAM bytes from 0 to 31
– block 1: RAM bytes from 32 to 63
– block 2: RAM bytes from 64 to 95
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Cache basic operation

• Each block is identified with its address in RAM, which is 
the RAM address of the first byte in the block.

• Since blocks contain 2m bytes, each block address has the 
following pattern:

x x … x x 0 0 … 0 0

• Question: what is the relationship between the number of a 
block and its address?
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Basic cache operation
• At any time, some RAM blocks  are in the cache too (we assume first-

level only caches, separate for instructions and for data, working at 
roughly the same speed as the CPU).

• When a word (for an integer, or an instruction in 4 bytes) is addressed, 
the hardware checks if the word is in the cache too.

• If so, this is a cache hit and every thing goes on normally, since the 
cache can work at the same speed of the other datapath components.

• If not, this is a cache miss: (the block containing) the missing data is 
fetched from RAM. Occasionally, a block must be removed from the 
cache, to accommodate for the new (missing) one.
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Direct-mapped cache

• Direct-Mapped caches  are the most simple ones. A direct-mapped 
cache consists of 2n entries, with consecutive numbers. 

• Each entry stores a block: 2m consecutive bytes from RAM (usually 
2m = 32 or 64). Each entry has two information with it:

1. a validity bit for the entry

2. a tag that uniquely identifies the block stored in the cache with 
respect to RAM

• As an instance, a 2048-entry cache, each 32-byte, contains overall 
2048 x 32 = 64KB of data (or instructions)
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Direct-mapped cache
• In a direct-mapped cache, each RAM block is stored in a 

single cache location.

• So, given a memory address, there is a single precise 
position in the cache where to look for. If it is in the cache, 
it is there.

• To find the cache location containing the RAM block 
holding the addressed data or instruction, the computation 
is:

(block address in RAM) modulo (number of entries in the cache)

• The computation is straightforward if the number of cache 
entries is a power of 2 18

what is a “block address”?



Direct-mapped cache
• The PC, a LOAD or a STORE specify a word address to be 

accessed (an instruction addressed by the PC, or a data item 
for reading or writing).

• How can we get the RAM address of the block holding that 
peculiar word?

• Once obtained that address, how can we check if the block 
is already in the cache?

• And if the block is in the cache, how do we get the word on 
the basis of the address specified through the PC, LOAD or 
STORE?
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Direct-mapped cache
• (Patterson-Henessy, fig. 7.5). 

As as example, let us assume 
a  RAM split into 32 blocks 
one byte each, and an 8-entry 
cache (a byte each entry, of 
course).

• In which cache entry is stored 
the block with address 01001? 
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• 01001 mod 1000 = 001. But note that cache entry 001 will match also 
blocks at addresses 00001, 10001, 11001. 

• What discriminates all blocks that can be stored in cache entry 001? 
Obviously, the two most significant bits of the address of each block, 
that are used as the tag associated to the cache line.



Direct-mapped cache

• So,  when the CPU requires block 01001, first of all it 
checks if cache entry 001 has its validity bit set (the entry 
could as well contain no data at all).

• If the bit is set, entry 001 tag is compared with the two most 
significant bits of the address of the requested block. 

• If there is a match, cache entry 001 holds the requested line, 
otherwise this is a cache miss (the same happens if the 
validity bit is not set).
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Direct-mapped cache
• In real cases, the RAM is organized in blocks with larger 

dimensions, and the CPU addresses a word (istruction or 
data) smaller than the block holding that word, but the 
scheme is the same.

• Let us assume 32-byte (25 byte) blocks, logically organized 
as 8 4-byte words and a 2048-entry (211 entries) cache.

• To store/fetch data from the cache, the 32-bit address 
generated from the CPU is split into 4 sections. For a 2048-
entry cache:
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TAG  (16 bit) INDEX (11 bit) WORD (3 bit) BYTE (2 bit)



Direct-mapped cache

• Where:

– TAG:  the 16 most significant bits in the CPU generated 
address. 

– INDEX: the cache entry holding the data item, if present 
(note: 211=2048)

– WORD: which 4-byte word within the 32-byte block is 
actually referenced  (23 = 8; 8 x 4 = 32)

– BYTE: usually unused, it specifys the byte referenced 
within the world.

– WORD and BYTE make up the DISPLACEMENT23



Direct-mapped cache
• The block whose address in RAM is:

“TAG – INDEX – 0 0 0 0 0”

• contains all RAM bytes from address

“TAG – INDEX – 0 0 0 0 0”

to address 

“TAG – INDEX – 1 1 1 1 1”

• Which addresses have the 8 4-byte words stored in line with 
address “TAG – INDEX – 0 0 0 0 0”?
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16 bit 11 bit



Direct-mapped cache
• When the CPU generates an address, the hardware extracts the 11 bits 

for INDEX, and uses them to address one of the 2048 entries in the 
cache 

– Question 1: why are the remaining 5 least significant address bits 
unused ?

– Question 2: what about the computation:
(RAM block address) modulo (Number of cache entries)

• If the corresponding entry is valid (as specified by the validity bit), the 
TAG field in the cache entry and the TAG address field are compared 
(the 16 most significant address bits). 

• If they are equal, this is a cache hit. Through the WORD field, only 
the addressed word is extracted from the cache (the same happens 
with the BYTE field, if a specific byte is addressed). 25

what is the “block address”?



Direct-mapped cache
• If the entry is invalid, or the two TAGs do not match, this is 

a cache miss.

• The missing block is fetched from RAM and it replaces the 
one (possibly) present (here is the temporal locality 
principle: an item used more recently substitutes an older 
one)

• Obviously, a cache miss always produces a waste in time 
(slightly) longer than the time required to directly fetch the 
data from RAM.

• In any case, all this operations are carried out in parallel in 
hardware, for maximum speed. 26



Direct-mapped cache
• A direct-mapped cache with 1024 4-byte entries. The 20 most 

significant bits are used as a  tag, the 10 intermediate ones as block 
index, the remaining 2 least significant bits for addressing the byte 
within the block (Patterson-Henessy, fig. 7.7)
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• Should we address 2-byte words 
within the blocks, which part of 
the CPU generated address would 
we use?



Cache dimension
• The “effective” cache dimension is larger than the 

“nominal” one: for each block, it is necessary to store the 
tag block and its validity bit.

• Let us consider for example a 16 Kbyte cache (214 bytes =  
16384 bytes) with 1024 entries (210), so 16-byte blocks (24) 
byte.

• If the address is 32 bits, each tag is composed of  32 – 10 –
4 = 18 bits, plus the validity bit, so that each entry has 128 + 
19 = 147 bits.

• Overall, the cache stores 1024 · 147 = 150528 bits, that is 
18816 bytes.
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Block dimension

• Cache performances depend also on block dimension. 
Generally speaking, larger blocks allow to reduce cache 
misses, because they exploit better spatial locality.

• However, block dimension cannot be enlarged beyond a 
certain level, because, for a given cache capacity, the larger 
the block size, the smaller the number of blocks in the 
cache, so the higher the probability to substitute a block 
(cache miss) before all of its data are actually used.
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Block dimension
• The picture (Patterson-Hennessy, 7.8) depicts cache miss frequency vs 

block size and cache size in SPEC92 benchmark. Larger caches allow 
to use larger blocks (and still cause a smaller number of cache 
misses).
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Address alignment & caches
• An address is aligned if it is congruent with the object it references

• Ex: a 32-bit integer variable INT is aligned if &INT mod 4 = 0

• Objects can be instructions or data – RISC architectures are designed 
for instruction alignment, CICS exhibit extensive mis-alignment.

• Proper alignment takes into account cache line length
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32-byte cache line

0 8 16 24 31

4-byte int

memory allocation

8-byte float 8-byte float 8-byte float4-byte int



Cache miss management
• Causes for misses:

– Compulsory misses
• first reference to a block

– Capacity
• A block is discarded to make room for other blocks and later it is referenced 

again

– 32K cache, scan of a 128K array

– Conflict

• A program references multiple addresses that map to the same block in the 
cache

– Two 8K arrays that map into the same cache lines
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Cache miss management
• What happens in case of cache miss? The pipeline must be 

stalled, until the missing instruction or data item is fetched 
from RAM. 

• In case of miss in the I-cache, the current PC must be 
decremented by the same amount by which it was increased 
during the IF phase.

• When the block containing the missing instruction/data item 
has been loaded, execution proceeds. With a missing 
instruction, the IF phase is executed, with a missing data 
item, the MEM one.
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Write policy
• Handling writes is more complex, since data must be changed in 

RAM as well, sooner or later.

• When a cache block receives a write, a first option is to propagate 
immediately the change to the RAM, thus maintaining cache 
coherence.

• In order to maintain cache coherence, with a cache miss on write the 
missing data item is fetched from RAM, modified in the cache, and 
written back to RAM.

• This write policy is called write-through: writes are always 
performed both in the cache and in RAM, so that the data present in 
both memories are always consistent.
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Write policy
• Write-through exhibits poor performance, since it requires 

access to RAM for every write in the cache, an operation 
that takes a lot of clock cycles.

• A solution to this problem is using a write buffer: a small 
memory in the CPU that hosts a data item, until it is written 
to RAM.

• Once the CPU has written in the cache and in the write 
buffer, it goes on executing, and the write buffer takes care 
of forwarding the data to RAM. The buffer is released when 
the write operation is complete.
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Write policy

• In true architectures, the write buffer holds more entries, to 
serve multiple frequent write requests: when the buffer gets 
filled (all data it holds still have to be moved to RAM), the 
pipeline must be stalled (unless the processor uses dynamic 
scheduling of the pipeline).
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Write policy

• An alternative scheme is write-back, which only modifies 
data in the cache (it is sometimes called write deferred).

• The write is forwarded to RAM (or to lower cache levels, if 
the are multiple cache levels) only if the data item has to be 
replaced with another data item having the same tag.

• Write-back requires more data to be stored at each cache 
block: besides the validity bit, it is necessary to use a dirty 
bit, which, if set, signals that the block has been modified.
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Write policy

• Write-back requires a policy to synchronize the cache with 
lower levels of the hierarchy and RAM in the end.

• A block with dirty bit set is written back in the rest of the 
hierarchy only when the block must be replaced.
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Write policy

• Write allocate : the block is allocated first (brought to the 
cache) then it undergoes one of the write actions .

• No-write allocate : the cache is not affected and the block 
is written only in lower-level memory hierarchy. The 
updated block comes to cache only in a subsequent read 
reference.

• Usually write-back is paired with write allocate, while 
write-through obviously favors no-write allocate
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RAM support

• The time required to fetch the data from RAM in case of a 
miss is called miss penalty.

• The length of miss penalty is due to the three operations 
necessary to handle a cache miss:

1. Sending to RAM the address of the missing block

2. Accessing the RAM to fetch the block

3. Transmitting the block to the CPU

We disregard the cost of forwarding the block to the cache once it is 
within the CPU. 40



RAM support

41

• Miss penalty Tmiss

• Taddr time to send the ADDRESS of the block

• Tact time to activate a memory row

• Ttrans time to transmit a memory word over the bus

• Given the length of a cache block and the structure of the memory, it 
is sufficient to estabilish the number of activations Nact and the 
number of transfers Ntrans, so that the miss penalty is:

• Tmiss=Taddr + Nact x Tact+ Ntrans x Ttrans

• This figure is usually expressed in number of EXTERNAL BUS clock 
cycles and then can be mapped to PROCESSOR’s clock cycles



RAM support

• The first and the third operation can take a single clock 
cycle (of the bus clock, not the CPU’s), while the second 
takes much longer, in the order of 10 to 20 clock cycles (of 
the bus, of course).

• Furthermore, a cache block is usually much larger than the 
amount of data that a memory bank can output with a single 
access.

• For instance, a block can have 16 bytes, while a RAM 
access allows to read a 32-bit word, that is 4 bytes, thus 
requiring 4 accesses to fetch a whole cache block.
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RAM support
• Let us consider a 32-bit system (with a 32-bit bus). 

Supposing that a RAM access takes 15 clock cycles (a 
reasonable assumption) to read a 32-bit word, to carry out a 
cache miss for a 16-byte block requires:

– 1 clock cycle to send the missing block address to the RAM

– 4 × 15 clock cycles to read the whole block

– 4 × 1 clock cycle to transmit the whole block to the cache

• This gives a total of 65 clock cycles (bus clock cycles !). 
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RAM support
• Improvements can be obtained by:

– increasing the bandwith to the RAM, the amount of data that can 
be fetched from RAM in a single access (for instance, by having a 
whole block fetched in a single access).

– widening the bus, so that the whole block extracted from RAM is 
transmitted to the processor in a single bus clock cycle.

• Widening the bus up to 16×8 bits in parallel is a very 
costly and difficult approach. All in all, even the increase in 
RAM bandwith can alone yield considerable advantages. 
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RAM support
• To increas RAM bandwith, it is necessary to set up the 

RAM with more banks, so that multiple words (not just a 
single one) can be read or written in a single clock cycle.

• Each bank gives access to a single word of a given block, 
and to read the (4, in our example) words in parallel, it 
suffices to send in parallel to each bank the address of block 
address they belong to.

• This scheme is called interleaved memory and allows to 
spare on the time required to fetch a whole block from 
RAM.
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RAM support
• Hennessy-Patterson, Fig 

5.27: interlaced memory 
(c)allows to keep a 
manageable bus width and 
to speed up RAM access in 
cache miss.
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• On the same case just considered, with approach (c) we get:

• 1 clock cycle to send the missing block address, 15 clock cycles to get 
the 4 words of the block (the 4 banks are accessed in parallel), 4 × 1 
clock cycles to transmit the whole to the cache, with a grand total of 
20 clock cycles, against 65 for case (a)



RAM support
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• Miss penalty Tmiss =Taddr + Nact x Tact+ Ntrans x Ttrans
taking into account cache structure, memory interleaving and system 
bus width (using memory chips supporting DDR tyechnology)

• LB - Length of a cache Block

• IF - Interleaving Factor

• MW - Memory bank Width

• BW - system Bus Width

• Nact = LB/(IF x MW)

• Ntrans = LB/BW



Memory Technology

48

• Performance metrics
– Latency is concern of cache
– Bandwidth is concern of multiprocessors and I/O
– Access time

• Time between read request and when desired word arrives
– Cycle time

• Minimum time between unrelated requests to memory

• DRAM used for main memory, SRAM used for 
cache

Copyright © 2012, Elsevier Inc. All rights reserved.



Memory Technology
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• SRAM
– Requires low power to retain bit
– Requires 6 transistors/bit

• DRAM
– Must be re-written after being read
– Must also be periodically refreshed

• Every ~ 8 ms
• Each row can be refreshed simultaneously

– One transistor/bit
– Address lines are multiplexed:

• Upper half of address:  row access strobe (RAS)
• Lower half of address:  column access strobe (CAS)



Memory Technology
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• Amdahl:
– Memory capacity should grow linearly with processor 

speed
– Unfortunately, memory capacity and speed has not kept 

pace with processors

• Some optimizations:
– Multiple accesses to same row
– Synchronous DRAM

• Added clock to DRAM interface
• Burst mode with critical word first

– Wider interfaces
– Double data rate (DDR)
– Multiple banks on each DRAM device



Memory Technology
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HP5- Fig. 2.12 Internal organization of a DRAM. Modern DRAMs are organized in banks, 
typically four for DDR3. Each bank consists of a series of rows. Sending a PRE (precharge) 
command opens or closes a bank. A row address RAS is sent with an Act (activate), which 
causes the row to transfer to a buffer. When the row is in the buffer, it can be transferred by 
successive column addresses CAS at whatever the width of the DRAM is (typically 4, 8, or 16 
bits in DDR3) or by specifying a block transfer and the starting address. Each command, as well 
as block transfers, are synchronized with a clock.



Memory Technology
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HP5 - Figure 2.31 DDR2 SDRAM timing diagram.



Memory Technology
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Memory Technology
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Memory Technology
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Memory Technology
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• DDR:
– DDR2

• Lower power (2.5 V -> 1.8 V)
• Higher clock rates (266 MHz, 333 MHz, 400 MHz)

– DDR3
• 1.5 V
• 800 MHz

– DDR4
• 1-1.2 V
• 1600 MHz

• GDDR5 is graphics memory based on DDR3



Memory Technology
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HP5 - Figure 2.15 Power consumption for a 2 Gb DDR3 SDRAM operating under three 
conditions: low power (shutdown) mode, typical system mode (DRAM is active 30% of the time 
for reads and 15% for writes), and fully active mode, where the DRAM is continuously reading or 
writing when not in precharge. Reads and writes assume bursts of 8 transfers. These data are based 
on a Micron 1.5V 2Gb DDR3-1066.



Set-Associative caches 
• A basic feature of direct-mapped caches is that a RAM 

block is always stored in the same cache entry.

• So, multiple RAM blocks match the same cache entry, since 
the cache is much smaller than the RAM.

• Allowing a more flexible block placement in the cache, it is 
possible to reduce cache misses, thus increasing system 
performance.

• This result can be obtained with n-way set-associative 
caches, where n is usually 2, 4 or 8.
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Set-Associative caches 

• A n-way set-associative cache is split into more sets, each 
containing n blocks.

• Each RAM block matches exactly a single set in the cache, 
and it can be stored in any of entries in the set.

• So, in a set-associative, the set (no longer the entry, as in a 
direct-mapped cache) containing a block is identified as:

(RAM block address) modulo (number of sets in the cache)
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Set-Associative caches
• A direct mapped cache and a 2-way set-associative cache, 

both with a capacity of 8 blocks. In the first, block 12 can be 
placed only in entry number 4. In the second, the same 
block can be placed either in entry 0 or in entry 1, the are 
part of set “zero” (Hennessy-Patterson, Fig. 5.4)
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Set-Associative caches
• A 4-way set-associative cache: 256 sets (8-bit index) each 

holding 4 blocks
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Address

Index V     Tag       Block V     Tag       Block V     Tag       Block V     Tag       Block

4-way mux

blockhit



Set-Associative caches
• Once identified the set containing a given block, it is still 

necessary to locate the entry holding the addressed block 
(through an associative search on all elements in the set).

• If the addressed block is missing, it must be brought into the 
cache, and if its set is full, one of the blocks of the set must 
be overwritten. Usually the “victim” block is the least 
recently used one (LRU block replacement policy).

• The circuitry required for this type of cache is more 
complex, but performance are better than with direct-
mapped caches. 
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Set-Associative caches

• As an example, let us consider two caches, each 4-entry, the 
first is direct-mapped, the second is 2-way set-associative.

• Let us assume accesses to RAM blocks with addresses 0,  8, 
0, 6, 8.

• How many cache misses do result?
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Set-Associative caches

• For the direct-mapped cache, addressed blocks will be placed in the 
following cache entries:

Block address Cache entry nella cache
0 0 modulo 4 = 0
6 6 modulo 4 = 2
8 8 modulo 4 = 0

64

• References “0, 8, 0, 6, 8” cause 5 cache misses, since blocks 0 and 8 
alternate within the same entry, and the first reference to any block 
causes a miss, obviously.



Cache Set-Associative
• For the 2-way set-associative cache, the 4 entries are split into 2 sets, 

indexed as 0 and 1, and addressed blocks will be placed in the sets as 
follows:

Block address Set
0 0 modulo 2 = 0
6 6 modulo 2 = 0
8 8 modulo 2 = 0

65

• With references “0, 8, 0, 6, 8”, blocks 0 and 8 are placed in separate 
entries of the same set, so that the second reference to block 0 does 
not generate a cache miss. When block 6 is addressed, (causing a 
cache miss), block 8 is removed from the cache (LRU policy), and the 
subsequent reference to block 8 generates a cache miss. Overall, there 
are 4 cache misses.



Set-Associative caches
• If the set-associative cache were 4-way, one can easily check that the 

previous sequence would result in 3 cache misses.

• By extension, an associative cache with a single, large set, where a 
block can be placed in any entry, is called fully associative cache.

• This type of cache yields best performance as to cache misses, but 
caches with (a few) thousands entries are much too complex and 
expensive to build.

• Still, the principle is valid: the larger the number of entries available 
for placing blocks (that is, the larger n, the number of ways), the better 
the performances.
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Set-Associative caches

• Miss rate in a D-cache for different types of caches with the same 
capacity (using SPEC2000 as benchmark)  (Patterson-Hennessy, fig. 
7.15)

Associativity Miss rate

1-way (direct mapped) 10.3%

2-way 8.6%

4-way 8.3%

8-way 8.1%
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• The advantages with different associativity seem minimal, but they are 
not, considering the cost of serving even a single miss…



Performance: a simple example

• What is the effect of the cache subsystem on CPU 
performance ? Let us make a simple estimate (with 
reasonable values): 

– instruction execution time (CPI): 1 clock cycle

– average miss rate: 2%

– average memory reference per instruction: 0,2

– time to fetch a data item from memory in case of miss: 100 clock 
cycles (CPU)
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Performance: a simple example

• What is the CPI, assuming a “perfect” cache? (cache miss = 
0, access time = 0). Answer = 1 CPI

• What would be the CPI, with no cache at all?

– CPI = 1 + 100 × 0,2 = 21

• And with a “real” cache?

– CPI = 1 + 0,02 × 100 × 0,2  = 1,4 (yet, assuming a cache with 0 
acces time)
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Performance

70

AverageMemoryAccessTimeHierarchy =
= HitTimeL1 +MissRateL1 × (HitTimeL2 +MissRateL2 ×MissPenaltyL2 )



Performance

71

CPUtime = IC x CPI x ClockCycleTime 
 

CPI = CPI ideal + averageClockCyclesLostStall 
 

Let us consider only the effect of the memory subsystem only 

 
averageClockCyclesLostStall =  A + B + C where 

A = CyclesLostRead 

B = CyclesLostWrite 

C = CyclesLostFetch 

 
A = %Read x MissRateonRead x MissPenaltyonRead 

B = %Write x MissRateonWrite x MissPenaltyonWrite 

C = MissRateonFetch x MissPenaltyonFetch 

 

I-cache for Fetch D-cache for Read and Write 
 

A and B may differ, because of write policy 

in WriteThrough MissPenaltyonRead = MisspenaltyonWrite 

in WriteBack another model is required 

 
Let us assume WriteThrough and a simplified behaviour 

A = B = (%Read+%Write) x MissRate x MissPenalty 

 

CPI real = CPI ideal + 
     MissRateonFetch x MissPenaltyonFetch +  
     (%Read+%Write) x MissRate x MissPenalty 
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Example 
 
CPI ideal = 1,5 
From benchmark %Read+%Write = 36% 
From memory subsytem MissPenalty = 200 
From profiling MissRate: Icache = 2%, Dcache = 4% 
 
CycleLostInstructions 2% x IC x 200 
CycleLostDataAccess 36% x IC x 4% x 200 
TotalCycleLost (4 + 2,88) x IC 
averageClockCyclesLostStall (4 + 2,88) = 6,88 
 
CPI real = CPI ideal + averageClockCyclesLostStall 
              =  1,5          +  6,88 
              =  8,38 
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Enhancements 
 

1) “Ideal memory” : no memory stalls 
 

2) “Ideal architecture”: no stalls due to conflicts 
 

3) “Improve CPU speed only”: overclocking 
 

4) “Improve memory subsystem”: reducing miss cost 
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1) “Ideal memory” : no memory stalls 

 
!"#$%&'(%)ℎ+'&,-./)011

!"#$%&'23'01 = 	 !"2	-'01!"2	%3'01 = 	
1,5 + 6,88

1,5 ≅ 5,58 

 
2) “Ideal architecture” : no stalls due to conflicts 

a. CPI ideal = 1 
b. No enhancement to memory subsystem, so memory stalls unchanged 

 
!"#$%&'(%)ℎ+'&,-./)011

!"#$%&'23'01 = 	 !"2	-'01!"2	%3'01 = 	
1 + 6,88

1 ≅ 7,88 
 

 
Percentage of time lost due to memory stalls 
 
a) Real case  !,##

$,%&!,## = 82% 
 

b) “Ideal architecture” !,##
$&!,## = 87% 
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3) “Improve CPU speed only”: overclocking 
 
Rather than optimizing the architecture, lets us increase the speed 
of the Cpu clock 
 
The memory subsystem remains untouched, so that the MissPenalty 
is constant in time, but its equivalence in CPUClockCycles changes 
 
Assumption: clock frequency doubled 
 
MissPenalty (in CPU clock cycles) = 2 * 200 = 400 
CycleLostInstructions 2% x IC x 400 
CycleLostDataAccess 36% x IC x 4% x 400 
TotalCycleLost (8 + 5.76) x IC 
averageClockCyclesLostStall (8 + 5,76) = 13,76 
 
CPIboosted = CPI ideal + averageClockCyclesLostStall 
              =  1,5          +  13,76 
              =  15,26 
 
Speedup of overclocking 
 

!"#$%&'!()*+
!"#$%&'!()*+,))-.'/ = 	

2!	3	!"2	3	!()*+!4*('
2!	3	!"25))-.'/	3	!()*+!4*(',))-.'/ =

8,38	
15,26	3	1/2 = 1,098 
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4) Improve memory subsystem”: reducing miss cost 
 
Let us assume that, by improving the RAM - bus - busclock organization the cost of the 
miss is reduced to half, so that 
 
Assumption: MissPenalty = 100 
 
The processor clock and its architecture are untouched 
 
 
MissPenalty (in CPU clock cycles) = 100 
CycleLostInstructions 2% x IC x 100 
CycleLostDataAccess 36% x IC x 4% x 100 
TotalCycleLost (2 + 1,44) x IC 
averageClockCyclesLostStall (2 + 1,44) = 3,44 
 
CPImissreduced = CPI ideal + averageClockCyclesLostStall 
              =  1,5          +  3,44 
              =  4,94 
 
Speedup versus overclocking and vs standard configuration 
 

!"#$%&'!()*+,))-.'/
!"#$%&'0%--1'/2*'/ = 	 5!	6	!"57))-.'/	6	!()*+!8*(',))-.'/5!	6	!"5&%--9'/2*'/	6	!()*+!8*(' =

15,26	6 12	
4,94 = 1,56 

 
!"#$%&'!()*+

!"#$%&'0%--1'/2*'/ = 	
5!	6	!"5	6	!()*+!8*('

5!	6	!"5&%--9'/2*'/	6	!()*+!8*(' =
8,38	
4,94 = 1,69 

 



Increase in performance

• A cache has better effects on system performances :

1. the smaller (in time) the hit time

2. the smaller (in time) the cost of a miss

3. the smaller the miss rate
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Reducing the cost of a cache miss

• The performance gap between RAM and CPU widens in time, so the 
cost of a miss gets higher and higher.

• Memory interleaving is a technique to reduce the time required to 
fetch from RAM a missing block.

• Another way to reduce cache miss cost consists of using multiple 
levels of cache, to avoid going down to main memory to get the 
missing block.

• With this approach, it is possible to find a reasonable trade-off 
between the requirements of having a cache running at the same speed 
as the CPU (expensive, and so small), and a cache large enough to 
hold a sufficient fraction of RAM (slower, but less expensive)
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Multilevel caches

• In a multivel cache system caches are usually inclusive, that is : 
– L1 Í L2 Í L3

• In modern multi-core processors, each core has private L1 and L2 
caches, while L3 is shared. L1 and L2 are on the same chip as the 
processor, while L3 can be: on the same chip; on a separate chip in the 
same package; on the motherboard.
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Multilevel caches

• In a system with at least two cache levels, the following 
should be true:

1. first level caches have an access time close to or equal to CPU 
speed, thus causing no delay in case of cache hit.

2. the second level cache is sufficiently larger than first level ones, 
so that the number of second level misses is considerably smaller 
than first level misses.

3. the third level cache has the same relationship with the second 
level one.
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Multilevel caches
• Current processors exhibit the following figures in caches:

Cache latency dimension

L1 1÷4 clock cycles 16÷64 Kbytes

L2 10÷15 clock cycles 256÷1024 Kbytes

L3 40÷50 clock cycles 2÷10 Mbytes
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Multilevel caches
• The three-level cache hierarchy of Intel i7:

Cache access time associativity dimension

L1 D-cache 4 cycles 8-way 32 Kbytes

L1 I-cache 4 cycles 4-way 32 Kbytes

L2 10 cycles 8-way 256 Kbytes

L3 35 cycles 16-way 2 Mbytes per core
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AverageMemoryAccessTimeHierarchy =
= HitTimeL1 +MissRateL1 × (HitTimeL2 +MissRateL2 ×MissPenaltyL2 )

A. One level only:  L1 
 

CPI = CPIexe+HitRateL1xHitPenaltyL1+MissRateL1x(HitPenaltyL1+MissPenaltyRAM) 
          CPIexe+LatencyL1+MissRateL1xMissPenaltyRAM 
 
 

B. Two levels: L1B –  L2 
 
Usually the L1B cache has a different dimension and 
a different latency with respect to L1 
 
CPI =  CPIexe+LatencyL1B+MissRateL1Bx(LatencyL2+MissrateL2xMissPenaltyRAM) 
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AverageMemoryAccessTimeHierarchy =
= HitTimeL1 +MissRateL1 × (HitTimeL2 +MissRateL2 ×MissPenaltyL2 )

CPI exe 1,5 CPI

One level L1 latency L1 Miss rate
10 4% 15,1 15,1

Two levels L1 latency L1 Miss rate L2 Latency L2 miss rate
4 20% 11 4% 8,42 8,42

Three levels L1 latency L1 Miss rate L2 Latency L2 miss rate L3 Latency L3 miss rate
4 20% 8 10% 25 4% 7,672 7,672

Miss Penalty Ram 90



Reducing cache misses

• It is the second best way to improve cache efficiency. 
There are multiple options: 

– First of all, set-associativity lowers cache miss rate.

– A proper block dimension (with respect to cache capacity) 
optimizes cache misses for a given cache dimension.

– Obviously, cache misses are reduced by enlarging the cache.
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Reducing cache misses

• Cache dimensions (L2 and L3 especially) have increased 
steadily: in 2001 a L2 cache was as large as the main 
memory in a desktop system of 1991.

• If the cache is too small at any level with respect to the 
amount of data/instructions required by a program, there 
arises a true thrashing effect, similar to what happens with 
virtual memory (see the notion studied in Operating 
Systems) 
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