
Static Instruction Level Parallelism

• Basics on Static ILP
• Pipeline scheduling and loop unrolling
• Static multiple issue: the VLIW approach
• Predicated instructions
• IA-64 architecture: Itanium II (skipped)
• Trimedia TM32

1

Static ILP

• So far, we have discussed the exploitation of parallelism
available among instructions during the execution.

• Pipeline dynamic scheduling, register renaming, branch
prediction, speculation, multiple issue, are all run time
techniques.

• This is why all techniques that exploit the available
parallelism in a program in this mode are referred to as
“dynamic ILP”.

2

Static ILP
• Compiler can play a major role in exploiting ILP, by

reordering the generated instructions, so that the pipeline
and the functional units will be bettered utilized when
executing the instructions.

• In so doing, the compiler must preserve the intended
behaviour of the program (semantics), as designed by the
programmer.

• These techniques try to leverage on available parallelism of
instructions before they enter execution, and therefore they
are called Static ILP.

3

Static ILP

• Static ILP is most important in embedded processors, that
must be inexpensive and energy saving: they simpply
cannot allow for the huge number of transistors required for
dynamic ILP.

• Static ILP is also used in the purely RISC IA-64 ISA
(architecture + instruction set) developed by Intel and HP
since 2000, at the heart of Itanium and Itanium II
processors.

• Actually, static and dynamic ILP do not split sharply, and
many modern architectures use some combination of both
techniques. 4

Static ILP: the concept
• Static ILP concept: keeping the pipeline working (avoiding

stalls) by looking (at compile time) for sequences of un-
correlated instructions that can overlap during execution in
the pipeline.

• To prevent being stalled, an instruction B dependent on
instruction A must be separated from A by an amount of
clock cycle at least equal to the number of cycles necessary
for A to produce its result.

• The compiler can (and, if, possible, must) place between A
and B other instructions, that of course should not introduce
further dependencies.

5

Static ILP: the concept
• The actual possibility for a compiler to perform this type of

“instruction scheduling” depends:

– on the amount of ILP available in the program being compiled

– on the length of the pipeline, on the type and number of available
functional units, and on the execution time of the various
instructions

– on the compiler knowing all these data for the CPU it is
generating code for !!

• Two CPUs with the same ISA but different microarchitectures (a
different datapath, a set of different FUs and possibly a different
number of pipeline stages), can yield different performances on the
code generated by a compiler that exploits Static ILP: the compiler
takes care of each specific microarchitecture. What about dynamic
ILP ?

6

Basic compiler techniques
• Let us consider a compiler generating code for a 5-stage pipeline CPU

with the following characteristics:

– the FUs are themselves pipelined, and a new instruction can be
launched at each new clock cycle

– Branches take two clock cycles

– Before instruction B can use the result produced by instruction A,
the following clock cycles must elapse (Hennessy-Patterson, Fig.
4.1):

7

(A) instruction producing result (B) instruction using result latency (clock cycles)

FP ALU op another FP ALU op 3

FP ALU op Store double 2

double ALU op branch 1

Load double FP ALU op 1

Basic techniques: pipeline scheduling
• Let us consider the following for, that adds a scalar to all

elements of a 1000-element array:
for (i = 1000; i > 0; i = i-1)

x[i] = x[i] + s;

• and its MIPS code translation (assuming that R1 and R2
have been pre-computed):

8

LOOP: LD F0, 0 (R1) // F0 = array element
FADD F4, F0, F2 // scalar is in F2
SD F4, 0 (R1) // store result
DADD R1, R1, #-8 // pointer to array is in R1 (DW)
BNE R1, R2, LOOP // suppose R2 pre-computed

Basic techniques: pipeline scheduling

• The three RAW hazards cause stalls in the pipeline, and the for loop
requires 10 clock cycles for a single iteration. 9

clock cycle issued
LOOP: LD F0, 0 (R1) 1

nop 2
FADD F4, F0, F2 3
stall 4
stall 5
SD F4, 0 (R1) 6
DADD R1, R1, #-8 7
stall 8
BNE R1, R2, LOOP 9
stall 10

• Here is an “execution” of the for loop with no scheduling:

No branch
prediction

Basic techniques: pipeline scheduling
• A “smart” compiler, with a notion of FUs latencies (previous table)

and knowing that delayed branch can be enforced, could do some
pipeline scheduling: namely, instructions reordering, so as to reduce
the number of stalls:

10

clock cycle issued
LOOP: LD F0, 0 (R1) 1

DADD R1, R1, #-8 2 // one stall “filled”
FADD F4, F0, F2 3
stall 4
BNE R1, R2, LOOP 5 // delayed branch
SD F4, 8 (R1) 6 // altered &

interchanged
with DADD

Basic techniques: pipeline scheduling

• Which are the changes?
– DADD moved in the second slot eliminates stalls (and associated

wasted clock cycles) between LD and FADD, and between DADD
and BNE

– moving SD after BNE eliminates the 1-cycle stall due to BNE and
decreases by 1 the stall between FADD and SD

– since SD and DADD have been swapped, the offset in SD must be
8 instead of 0

– This type of scheduling is only possible if the compiler knows the
latency (in clock cycles) of each generated instruction (that is, if it
knows the details of the hardware organization of the architecture
for which it is generating code)

11

LOOP: 1 LD F0, 0 (R1)
2 DADD R1, R1, #-8
3 FADD F4, F0, F2
4 stall
5 BNE R1, R2, LOOP
6 SD F4, 8 (R1)

Basic techniques: loop unrolling

• The scheduled code is much better, but one can note that the 6 clock
cycles necessary for one iteration in the loop are used as follows:
– 3 to work on the array’s elements (LD,ADD,SD)
– 3 to manage loop overhead (DADD, BNE, stall)

• An alternative approach to pipeline scheduling is increasing the
number of instructions that actually work on the array, with respect to
those used for loop management. How?

• Instructions from consecutive iterations can be merged into a single
“fat” iteration, managed by a single control point (a unique BNE).
This is a form of static loop unrolling.

12

Basic techniques: loop unrolling

13

As an instance, if the number of iterations N≈0 mod(4), the
original loop can be unrolled 4 times:

LD F0, 0 (R1)
FADD F4, F0, F2
SD F4, 0 (R1) // drop DADD & BNE
LD F6, -8 (R1)
FADD F8, F6, F2
SD F8, -8 (R1) // drop DADD & BNE
LD F10, -16 (R1)
FADD F12, F10, F2
SD F12, -16 (R1) // drop DADD & BNE
LD F14, -24 (R1)
FADD F16, F14, F2
SD F16, -24 (R1)
DADD R1, R1, #-32
BNE R1, R2, LOOP

Basic techniques: loop unrolling

Tecniche di base: loop unrolling
• Let us not consider what the compiler has done about the registers (a

form of “renaming”).
• If the code is executed as it is, its execution requires 28 clock cycles,

because of instructions latencies, that induce some stalls in the
pipeline. From the latency table we have:
– 1-cycle stall between any LD and the associated FADD

– 2-cycle stall between any FADD and the associated SD

– 1-cycle stall between the DADD and the BNE

• as a result, each for loop takes 7 clock cycles on average: better than
the first solution, but worse than with the pipeline scheduling just
considered.

14

Basic techniques: loop unrolling

Basic techniques:
loop unrolling & pipeline scheduling

• Branch elimination through loop unrolling allows to put into
a single “large loop” instructions that belong in different
iterations of the for loop

• Furthermore, register renaming has increased the number of
independent instructions within the “large loop”, that can be
thus re-orderd in a profitable way.

• That is to say, the code can be optimized by combining
pipeline scheduling with loop unrolling.

15

Loop unrolling & pipeline scheduling

16

LD F0, 0 (R1)
LD F6, -8 (R1)
LD F10, -16 (R1)
LD F14, -24 (R1)
FADD F4, F0, F2
FADD F8, F6, F2
FADD F12, F10, F2
FADD F16, F14, F2
SD F4, 0 (R1)
SD F8, -8 (R1)
DADD R1, R1, #-32
SD F12, 16 (R1)
BNE R1, R2, LOOP
SD F16, 8 (R1) // 8 – 32 = -24 (?)

moving these two
instructions allows to
eliminate the last two
stalls

unrolled instructions (loop
unrolling) can be re-
ordered(pipeline scheduling) to
eliminate of stalls

Tecniche di base:
loop unrolling & pipeline scheduling

• A careful inspection of the code allows to verify that it is
equivalent to the 4 iteration of the for loop.

• 4 iterations are carried out in 14 clock cycles, that is 3,5
clock cycles per iteration, against 10 necessary before the
“compilation”

17

Loop unrolling & pipeline scheduling

• The primary purpose of unrolling is to identify “linear
segments of code”, that is sequences of instructions with no
intervening branch – this is a basic compilation optimization

• Instructions scheduling is easier within “linear segments of
code”

• Unrolling is not always “possible”, and it has also some
drawbacks, so it must be used when it is worth doing

18

Loop unrolling & pipeline scheduling
implementation details

• Conditions for unrolling
– No loop-carried dependency
– enough resources (registers) available

• Drawbacks of unrolling
– longer code “footprint” (executable)

– shortage of RAM in embedded processors

19

Loop unrolling & pipeline scheduling
implementation details

• Loop dependency analysis

From CS553 Principles of Compilation, Univ. Arizona, Copyright © 2011 C. Collberg

20

Loop unrolling & pipeline scheduling
implementation details

Dependence Graphs I

There can be three kinds of dependencies between statements:

flow dependence
Also, true dependence or definition-use dependence.

(i) X := · · ·
.....

(j) · · · := X

Statement (i) generates (defines) a value which is used by
statement (j). We write (i) −→ (j).

anti-dependence
Also, use-definition dependence.

(i) · · · := X

.....

(j) X := · · ·

Dependence Graphs II

Statement (i) uses a value overwritten by statement (j).
We write (i)−→+ (j).

Output-dependence

Also, definition-definition dependence.

(i) X := · · ·

(j) X := · · ·

Statements (i) and (j) both assign to (define) the same
variable. We write (i)−→◦ (j).

Regardless of the type of dependence, if statement (j)
depends on (i), then (i) has to be executed before (j).

• Loop dependency analysis

From CS553 Principles of Compilation, Univ. Arizona, Copyright © 2011 C. Collberg

21

Loop unrolling & pipeline scheduling
implementation details

• Dependence graph

From CS553 Principles of Compilation, Univ. Arizona, Copyright © 2011 C. Collberg

22

Loop unrolling & pipeline scheduling
implementation detailsData Dependence Analysis I

The Dependence Graph:

S1: A := 0;

S2: B := A;

S3: C := A + D;

S4: D := 2;

S3

S4

S1

S2

In any program without loops, the dependence graph will be
acyclic.
Other common notations are

Flow −→ ≡ δ ≡ δf

Anti −→+ ≡ δ ≡ δa

Output −→◦ ≡ δ◦ ≡ δo

Lecture 5 Architecture of Parallel Computers 1

Loop-independent vs. loop-carried dependences

[§3.2] Loop-carried dependence: dependence exists across iterations;
i.e., if the loop is removed, the dependence no longer exists.

Loop-independent dependence: dependence exists within an iteration;
i.e., if the loop is removed, the dependence still exists.

Example:

S1[i] →T S1[i+1]: loop-carried

S1[i] →T S2[i]: loop-independent

S3[i,j] →T S3[i,j+1]:

• loop-carried on for j loop

• no loop-carried dependence
in for i loop

S4[i,j] →T S4[i+1,j]:

• no loop-carried dependence
in for j loop

• loop-carried on for i loop

Iteration-space Traversal Graph (ITG)

[§3.2.1] The ITG shows graphically the order of traversal in the
iteration space. This is sometimes called the happens-before
relationship. In an ITG,

• A node represents a point in the iteration space

• A directed edge indicates the next point that will be encountered
after the current point is traversed

Example:

for (i=1; i<n; i++) {

 S1: a[i] = a[i-1] + 1;
 S2: b[i] = a[i];
}

for (i=1; i<n; i++)
 for (j=1; j< n; j++)

 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<n; i++)
 for (j=1; j< n; j++)

 S4: a[i][j] = a[i-1][j] + 1;

for (i=1; i<4; i++)
 for (j=1; j<4; j++)
 S3: a[i][j] = a[i][j-1] + 1;

© 2010 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2010 4

Dependence relationships for Loop Nest 1

• True dependences:

o S1[i,j] →T S1[i,j+1]

o S1[i,j] →T S1[i+1,j]

• Output dependences:

o None

• Anti-dependences:

o S1[i,j] →A S1[i+1,j]

o S1[i,j] →A S1[i,j+1]

Exercise: Suppose we dropped off the first half of S1, so we had

S1: a[i][j] = a[i-1][j] + a[i+1][j];

or the last half, so we had

S1: a[i][j] = a[i][j-1] + a[i][j+1];

Which of the dependences would still exist?

i

1

2

n

n 2 1 . . .

. . .

© 2010 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2010 4

Dependence relationships for Loop Nest 1

• True dependences:

o S1[i,j] →T S1[i,j+1]

o S1[i,j] →T S1[i+1,j]

• Output dependences:

o None

• Anti-dependences:

o S1[i,j] →A S1[i+1,j]

o S1[i,j] →A S1[i,j+1]

Exercise: Suppose we dropped off the first half of S1, so we had

S1: a[i][j] = a[i-1][j] + a[i+1][j];

or the last half, so we had

S1: a[i][j] = a[i][j-1] + a[i][j+1];

Which of the dependences would still exist?

i

1

2

n

n 2 1 . . .

. . .

O

• Iteration Space: the set of iteration vectors

From CS553 Principles of Compilation, Univ. Arizona, Copyright © 2011 C. Collberg

23

Loop unrolling & pipeline scheduling
implementation details

Loop Fundamentals II

FOR i := 1 TO 3 DO

FOR j := 1 TO 4 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,⟨1, 3⟩,⟨1, 4⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,⟨2, 4⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}.

Represented graphically:
2

431

i

j

1

3

2

Loop Fundamentals II

FOR i := 1 TO 3 DO

FOR j := 1 TO 4 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,⟨1, 3⟩,⟨1, 4⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,⟨2, 4⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}.

Represented graphically:
2

431

i

j

1

3

2

Loop Fundamentals III

The iteration-space is often rectangular, but in this case it’s
trapezoidal:

FOR i := 1 TO 3 DO

FOR j := 1 TO i + 1 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}

Represented graphically:
i

j

1

3

2

2 431

Loop Fundamentals III

The iteration-space is often rectangular, but in this case it’s
trapezoidal:

FOR i := 1 TO 3 DO

FOR j := 1 TO i + 1 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}

Represented graphically:
i

j

1

3

2

2 431

• Iteration space Traversal Graph (ITG): the order of traversal
in the iteration space, that is a lexicographical ordering of
the iteration vectors

From CS553 Principles of Compilation, Univ. Arizona, Copyright © 2011 C. Collberg

24

Loop unrolling & pipeline scheduling
implementation details

Loop Fundamentals II

FOR i := 1 TO 3 DO

FOR j := 1 TO 4 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,⟨1, 3⟩,⟨1, 4⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,⟨2, 4⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}.

Represented graphically:
2

431

i

j

1

3

2

Loop Fundamentals II

FOR i := 1 TO 3 DO

FOR j := 1 TO 4 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,⟨1, 3⟩,⟨1, 4⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,⟨2, 4⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}.

Represented graphically:
2

431

i

j

1

3

2

Loop Fundamentals III

The iteration-space is often rectangular, but in this case it’s
trapezoidal:

FOR i := 1 TO 3 DO

FOR j := 1 TO i + 1 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}

Represented graphically:
i

j

1

3

2

2 431

Loop Fundamentals III

The iteration-space is often rectangular, but in this case it’s
trapezoidal:

FOR i := 1 TO 3 DO

FOR j := 1 TO i + 1 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}

Represented graphically:
i

j

1

3

2

2 431

Loop Fundamentals II

FOR i := 1 TO 3 DO

FOR j := 1 TO 4 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,⟨1, 3⟩,⟨1, 4⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,⟨2, 4⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}.

Represented graphically:
2

431

i

j

1

3

2

Loop Fundamentals III

The iteration-space is often rectangular, but in this case it’s
trapezoidal:

FOR i := 1 TO 3 DO

FOR j := 1 TO i + 1 DO

statement

ENDFOR

ENDFOR

Iteration-space: {⟨1, 1⟩,⟨1, 2⟩,
⟨2, 1⟩,⟨2, 2⟩,⟨2, 3⟩,
⟨3, 1⟩,⟨3, 2⟩,⟨3, 3⟩,⟨3, 4⟩}

Represented graphically:
i

j

1

3

2

2 431

• Loop-carried vs Loop-independent dependences

Loop-carried dependence exists across iterations, if the loop
is removed, it no longer exists

Loop-independent dependence exists within an iteration, if
the loop is removed, it exists

25

Loop unrolling & pipeline scheduling
implementation details

• Loop-carried vs Loop-independent dependences

26

Loop unrolling & pipeline scheduling
implementation details

Lecture 5 Architecture of Parallel Computers 1

Loop-independent vs. loop-carried dependences

[§3.2] Loop-carried dependence: dependence exists across iterations;
i.e., if the loop is removed, the dependence no longer exists.

Loop-independent dependence: dependence exists within an iteration;
i.e., if the loop is removed, the dependence still exists.

Example:

S1[i] →T S1[i+1]: loop-carried

S1[i] →T S2[i]: loop-independent

S3[i,j] →T S3[i,j+1]:

• loop-carried on for j loop

• no loop-carried dependence
in for i loop

S4[i,j] →T S4[i+1,j]:

• no loop-carried dependence
in for j loop

• loop-carried on for i loop

Iteration-space Traversal Graph (ITG)

[§3.2.1] The ITG shows graphically the order of traversal in the
iteration space. This is sometimes called the happens-before
relationship. In an ITG,

• A node represents a point in the iteration space

• A directed edge indicates the next point that will be encountered
after the current point is traversed

Example:

for (i=1; i<n; i++) {

 S1: a[i] = a[i-1] + 1;
 S2: b[i] = a[i];
}

for (i=1; i<n; i++)
 for (j=1; j< n; j++)

 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<n; i++)
 for (j=1; j< n; j++)

 S4: a[i][j] = a[i-1][j] + 1;

for (i=1; i<4; i++)
 for (j=1; j<4; j++)
 S3: a[i][j] = a[i][j-1] + 1;

CSC/ECE 506 Lecture Notes, Copyright 2010 © F. Gehringer

• Loop-carried Dependence Graph (LDG): it shows
True/Anti/Output dependences, each node is an iteration
vector, each directed edge represents a dependence.

27

Loop unrolling & pipeline scheduling
implementation details

CSC/ECE 506 Lecture Notes, Copyright 2010 © F. Gehringer

Lecture 5 Architecture of Parallel Computers 1

Loop-independent vs. loop-carried dependences

[§3.2] Loop-carried dependence: dependence exists across iterations;
i.e., if the loop is removed, the dependence no longer exists.

Loop-independent dependence: dependence exists within an iteration;
i.e., if the loop is removed, the dependence still exists.

Example:

S1[i] →T S1[i+1]: loop-carried

S1[i] →T S2[i]: loop-independent

S3[i,j] →T S3[i,j+1]:

• loop-carried on for j loop

• no loop-carried dependence
in for i loop

S4[i,j] →T S4[i+1,j]:

• no loop-carried dependence
in for j loop

• loop-carried on for i loop

Iteration-space Traversal Graph (ITG)

[§3.2.1] The ITG shows graphically the order of traversal in the
iteration space. This is sometimes called the happens-before
relationship. In an ITG,

• A node represents a point in the iteration space

• A directed edge indicates the next point that will be encountered
after the current point is traversed

Example:

for (i=1; i<n; i++) {

 S1: a[i] = a[i-1] + 1;
 S2: b[i] = a[i];
}

for (i=1; i<n; i++)
 for (j=1; j< n; j++)

 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<n; i++)
 for (j=1; j< n; j++)

 S4: a[i][j] = a[i-1][j] + 1;

for (i=1; i<4; i++)
 for (j=1; j<4; j++)
 S3: a[i][j] = a[i][j-1] + 1;

Lecture 5 Architecture of Parallel Computers 3

Another example:

• Draw the ITG

• List all the dependence relationships

Note that there are two “loop nests” in the code.

• The first involves S1.
• The other involves S2 and S3.

What do we know about the ITG for these nested loops?

1

2

3

3 2 1

i

j

T T

T T

T T

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)

 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

• Loop-carried Dependence Graph (LDG): it shows
True/Anti/Output dependences, each node is an iteration
vector, each directed edge represents a dependence.

28

Loop unrolling & pipeline scheduling
implementation details

CSC/ECE 506 Lecture Notes, Copyright 2010 © F. Gehringer

Lecture 5 Architecture of Parallel Computers 1

Loop-independent vs. loop-carried dependences

[§3.2] Loop-carried dependence: dependence exists across iterations;
i.e., if the loop is removed, the dependence no longer exists.

Loop-independent dependence: dependence exists within an iteration;
i.e., if the loop is removed, the dependence still exists.

Example:

S1[i] →T S1[i+1]: loop-carried

S1[i] →T S2[i]: loop-independent

S3[i,j] →T S3[i,j+1]:

• loop-carried on for j loop

• no loop-carried dependence
in for i loop

S4[i,j] →T S4[i+1,j]:

• no loop-carried dependence
in for j loop

• loop-carried on for i loop

Iteration-space Traversal Graph (ITG)

[§3.2.1] The ITG shows graphically the order of traversal in the
iteration space. This is sometimes called the happens-before
relationship. In an ITG,

• A node represents a point in the iteration space

• A directed edge indicates the next point that will be encountered
after the current point is traversed

Example:

for (i=1; i<n; i++) {

 S1: a[i] = a[i-1] + 1;
 S2: b[i] = a[i];
}

for (i=1; i<n; i++)
 for (j=1; j< n; j++)

 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<n; i++)
 for (j=1; j< n; j++)

 S4: a[i][j] = a[i-1][j] + 1;

for (i=1; i<4; i++)
 for (j=1; j<4; j++)
 S3: a[i][j] = a[i][j-1] + 1;

Lecture 5 Architecture of Parallel Computers 3

Another example:

• Draw the ITG

• List all the dependence relationships

Note that there are two “loop nests” in the code.

• The first involves S1.
• The other involves S2 and S3.

What do we know about the ITG for these nested loops?

1

2

3

3 2 1

i

j

T T

T T

T T

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)

 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

• Loop-carried Dependence Graph (LDG): it shows
True/Anti/Output dependences, each node is an iteration
vector, each directed edge represents a dependence.

29

Loop unrolling & pipeline scheduling
implementation details

CSC/ECE 506 Lecture Notes, Copyright 2010 © F. Gehringer

Lecture 5 Architecture of Parallel Computers 3

Another example:

• Draw the ITG

• List all the dependence relationships

Note that there are two “loop nests” in the code.

• The first involves S1.
• The other involves S2 and S3.

What do we know about the ITG for these nested loops?

1

2

3

3 2 1

i

j

T T

T T

T T

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)

 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

© 2010 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2010 4

Dependence relationships for Loop Nest 1

• True dependences:

o S1[i,j] →T S1[i,j+1]

o S1[i,j] →T S1[i+1,j]

• Output dependences:

o None

• Anti-dependences:

o S1[i,j] →A S1[i+1,j]

o S1[i,j] →A S1[i,j+1]

Exercise: Suppose we dropped off the first half of S1, so we had

S1: a[i][j] = a[i-1][j] + a[i+1][j];

or the last half, so we had

S1: a[i][j] = a[i][j-1] + a[i][j+1];

Which of the dependences would still exist?

i

1

2

n

n 2 1 . . .

. . .

Lecture 5 Architecture of Parallel Computers 5

Draw the LDG for Loop Nest 1.

Dependence relationships for Loop Nest 2

• True dependences:

o S2[i,j] →T S3[i,j+1]

• Output dependences:

o None

• Anti-dependences:

o S2[i,j] →A S3[i,j] (loop-independent dependence)

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
both true, and
anti-dependences

• Loop-carried Dependence Graph (LDG): it shows
True/Anti/Output dependences, each node is an iteration
vector, each directed edge represents a dependence.

30

Loop unrolling & pipeline scheduling
implementation details

CSC/ECE 506 Lecture Notes, Copyright 2010 © F. Gehringer

Lecture 5 Architecture of Parallel Computers 3

Another example:

• Draw the ITG

• List all the dependence relationships

Note that there are two “loop nests” in the code.

• The first involves S1.
• The other involves S2 and S3.

What do we know about the ITG for these nested loops?

1

2

3

3 2 1

i

j

T T

T T

T T

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)

 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

Lecture 5 Architecture of Parallel Computers 5

Draw the LDG for Loop Nest 1.

Dependence relationships for Loop Nest 2

• True dependences:

o S2[i,j] →T S3[i,j+1]

• Output dependences:

o None

• Anti-dependences:

o S2[i,j] →A S3[i,j] (loop-independent dependence)

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
both true, and
anti-dependences

© 2010 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2010 6

Draw the LDG for Loop Nest 2.

Why are there no vertical edges in this graph? Answer here.

Why is the anti-dependence not shown on the graph?

Finding parallel tasks across iterations

[§3.2.2] Analyze loop-carried dependences:

• Dependences must be enforced (especially true dependences;
other dependences can be removed by privatization)

• There are opportunities for parallelism when some dependences
are not present.

Example 1

LDG:

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
only true dependences

for (i=2; i<=n; i++)
 S: a[i] = a[i-2];

© 2010 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2010 6

Draw the LDG for Loop Nest 2.

Why are there no vertical edges in this graph? Answer here.

Why is the anti-dependence not shown on the graph?

Finding parallel tasks across iterations

[§3.2.2] Analyze loop-carried dependences:

• Dependences must be enforced (especially true dependences;
other dependences can be removed by privatization)

• There are opportunities for parallelism when some dependences
are not present.

Example 1

LDG:

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
only true dependences

for (i=2; i<=n; i++)
 S: a[i] = a[i-2];

• Finding parallel tasks across iterations: identify all
dependences, remove anti-dependences (renaming),
identifying independent, disjoint subgraph in the LDG

31

Loop unrolling & pipeline scheduling
implementation details

CSC/ECE 506 Lecture Notes, Copyright 2010 © F. Gehringer

© 2010 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2010 6

Draw the LDG for Loop Nest 2.

Why are there no vertical edges in this graph? Answer here.

Why is the anti-dependence not shown on the graph?

Finding parallel tasks across iterations

[§3.2.2] Analyze loop-carried dependences:

• Dependences must be enforced (especially true dependences;
other dependences can be removed by privatization)

• There are opportunities for parallelism when some dependences
are not present.

Example 1

LDG:

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
only true dependences

for (i=2; i<=n; i++)
 S: a[i] = a[i-2];

Lecture 5 Architecture of Parallel Computers 7

We can divide the loop into two parallel
tasks (one with odd iterations and
another with even iterations):

Example 2

LDG

How many parallel tasks are there here?

Example 3

LDG

i

j

1

2

n

n 2 1 . . .

. . .

for (i=2; i<=n; i+=2)

 S: a[i] = a[i-2];
for (i=3; i<=n; i+=2)

 S: a[i] = a[i-2];

for (i=0; i<n; i++)
 for (j=0; j< n; j++)
 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

j

1

2

n

n 2 1 . .
.

Note: each
edge represents
both true, and
anti-dependences

• Finding parallel tasks across iterations: identify all
dependences, remove anti-dependences (renaming),
identifying independent, disjoint subgraph in the LDG

32

Loop unrolling & pipeline scheduling
implementation details

CSC/ECE 506 Lecture Notes, Copyright 2010 © F. Gehringer

Lecture 5 Architecture of Parallel Computers 7

We can divide the loop into two parallel
tasks (one with odd iterations and
another with even iterations):

Example 2

LDG

How many parallel tasks are there here?

Example 3

LDG

i

j

1

2

n

n 2 1 . . .

. . .

for (i=2; i<=n; i+=2)

 S: a[i] = a[i-2];
for (i=3; i<=n; i+=2)

 S: a[i] = a[i-2];

for (i=0; i<n; i++)
 for (j=0; j< n; j++)
 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

j

1

2

n

n 2 1 . .
.

Note: each
edge represents
both true, and
anti-dependences

Lecture 5 Architecture of Parallel Computers 7

We can divide the loop into two parallel
tasks (one with odd iterations and
another with even iterations):

Example 2

LDG

How many parallel tasks are there here?

Example 3

LDG

i

j

1

2

n

n 2 1 . . .

. . .

for (i=2; i<=n; i+=2)

 S: a[i] = a[i-2];
for (i=3; i<=n; i+=2)

 S: a[i] = a[i-2];

for (i=0; i<n; i++)
 for (j=0; j< n; j++)
 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

j

1

2

n

n 2 1 . .
.

Note: each
edge represents
both true, and
anti-dependences

• Finding parallel tasks across iterations: identify all
dependences, remove anti-dependences (renaming),
identifying independent, disjoint subgraph in the LDG

33

Loop unrolling & pipeline scheduling
implementation details

CSC/ECE 506 Lecture Notes, Copyright 2010 © F. Gehringer

Lecture 5 Architecture of Parallel Computers 7

We can divide the loop into two parallel
tasks (one with odd iterations and
another with even iterations):

Example 2

LDG

How many parallel tasks are there here?

Example 3

LDG

i

j

1

2

n

n 2 1 . . .

. . .

for (i=2; i<=n; i+=2)

 S: a[i] = a[i-2];
for (i=3; i<=n; i+=2)

 S: a[i] = a[i-2];

for (i=0; i<n; i++)
 for (j=0; j< n; j++)
 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

j

1

2

n

n 2 1 . .
.

Note: each
edge represents
both true, and
anti-dependences

• Finding parallel tasks across iterations: identify all
dependences, remove anti-dependences (renaming),
identifying independent, disjoint subgraph in the LDG

34

Loop unrolling & pipeline scheduling
implementation details

CSC/ECE 506 Lecture Notes, Copyright 2010 © F. Gehringer

© 2010 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2010 8

Identify which nodes are not dependent on each other

In each anti-diagonal, the nodes are independent of each other

We need to rewrite the code to iterate over anti-diagonals:

Calculate number of anti-diagonals
for each anti-diagonal do
 Calculate the number of points in the current anti-diagonal
 for each point in the current anti-diagonal do
 Compute the value of the current point in the matrix

Parallelize loops highlighted above.

i

1

2

n

n 2 1 . .
.

. .

.

Note: each
edge represents
both true, and
anti-dependences

for (i=1; i <= 2*n-1; i++) {// 2n-1 anti-diagonals
 if (i <= n) {

 points = i; // number of points in anti-diag
 row = i; // first pt (row,col) in anti-diag
 col = 1; // note that row+col = i+1 always
 }
 else {

 points = 2*n – i;
 row = n;
 col = i-n+1; // note that row+col = i+1 always
 }
 for_all (k=1; k <= points; k++) {

 a[row][col] = … // update a[row][col]
 row--; col++;
 }
}

• Software pipelining: an alternative method to re-organize
loops so that ILP is exposed and loop-carried dependences
are eliminated.

35

Pipeline scheduling:
software pipelining

• Software pipelining: an alternative method to re-organize
loops so that ILP is exposed.

36

Pipeline scheduling:
software pipelining

37

Pipeline scheduling:
software pipelining

• Pipeline scheduling: an alternative method to re-organize
loops so that ILP is exposed and loop-carried dependences
are eliminated.

38

Pipeline scheduling:
software pipelining

Basic compiler techniques

• A compiler embedding advanced analysis techniques is able to
produce optimised code, as the example just considered, provided it
has info about the target architecture.

• Obviously, a longer compile time is required for the optimization.

• A worse performance can also be expected, if the code is run on
machines with the same ISA, but a different architecture (as an
instance, different pipeline stages).

• Question: the optimized code could eventually not work on other
architectures (with the same ISA, of course)?

39

Basic compiler techniques
• There are actually other problems not discussed so far, that

are to be tackled by the compiler:

– how many rename registers can be used for unrolling ? (namely,
how many are available at the ISA level?) When registers run out,
the compiler must resort to RAM for temporary storage, which is
very inefficient.

– What about loops whose terminating condition cannot be pre-
computed (as in while-do or repeat-until)?

– Loop-unrolling produces a longer code than the original. So, there
is a chance that Instruction Memory cache misses are more
frequent, which makes advantages of unrolling vanish partially (or
totally). 40

Static multiple issue
• If one does not consider these problems, the advantages of

compile time ILP are even more evident in multiple issue
processors.

• Let us take into consideration the superscalar MIPS
architecture already discussed, capable of issuing two
instructions per clock cycle:
– a load / store / branch / integer ALU and
– any FP operation

• Let us suppose that the previous example has been unrolled
over 5 cycles, and let us use instruction latencies discussed
in chart n. 7.

41

Static multiple issue
• Here is the outcome of the execution: it takes 12 clock cycles, that is

2,5 clock cycles per iteration, to be compared with 3,5 in the same
processor, with no multiple issue (Hennessy-Patterson, Fig. 4.2):

42

loop: int. instruction FP instruction clock cycle

LD F0, 0 (R1) 1
LD F6, -8 (R1) 2

LD F10, -16 (R1) FADD F4, F0, F2 3
LD F14, -24 (R1) FADD F8, F6, F2 4

LD F18, -32 (R1) FADD F12, F10, F2 5

SD F4, 0 (R1) FADD F16, F14, F2 6
SD F8, -8 (R1) FADD F20, F18, F2 7

SD F12, -16 (R1) 8
DADD R1, R1, #-40 9

SD F16, 16 (R1) 10

BNE R1, R2, Loop 11
SD F20, 8 (R1) 12

Static multiple issue: VLIW

• Superscalar processors using dynamic ILP decide “on the run” on the
number of instructions to be issued at each clock cycle. These
processors use fairly simple compilers, but require more hardware, to
minimize stalls and maximize the number of issued instructions.

• Static multiple issue processors issue a pre-defined number of
instructions; it is the task of the compiler to prepare a sequence of
instructions to be executed by the CPU in an order that maximizes
performances, using the techniques just considered (and more
advanced ones).

• Actually, the compiler prepares a series of “bundles” (instruction
packets) each containing a fixed number of instructions (a few could
be no-ops).

43

Static multiple issue: VLIW

• Each issue packet contains independent instructions, that can be
executed in parallel in the pipeline.

• The compiler sets up these packets by reordering instructions (as in
the examples just considered) checking and eliminating dependencies,
a job that need not be done by the CPU.

• As a consequence, the CPU has a simpler architecture, and the issue
phase is shorter, since it is no longer necessary to check instructions at
run time to detect dependencies: this analysis has already been carried
out by the compiler.

44

Static multiple issue: VLIW

• This approach is called VLIW (Very Long Instruction Word), since
the first architectures that deployed it (beginning of 80s), had very
long machine instructions (128 bits or more), each specifying multiple
independent operations to be executed in parallel by the CPU.

• The name EPIC (Explicitly Parallel Instruction Computer) used by
Intel in the IA-64 architecture denotes the same approach.

45

Static multiple issue: VLIW

• The larger the number of instructions that can be issued together by a
processor, the more advantageous the VLIW approach.

• The overhead incurred upon by a superscalar processor to check at
run-time instruction dependencies grows not linearly with the number
of instructions (each instruction must be checked against all others
that can potentially be issued).

46

VLIW: an example
• Let us consider a VLIW processor capable of issuing 5 instructions,

with the following functional units:
– integer unit (ALU) that handles branches as well
– two floating point units
– two memory access units

• To completely exploit these computing resources, the code must
embed enough instruction parallelism, and the compiler must be able
to extract it, using loop unrolling and pipeline scheduling.

• Let us re-examine the previous example, and let us assume a level of
unrolling of 7 for iterations. The code, arranged in independent packet
by the compiler, could arrive to the CPU as follows:

47

VLIW: an example
Hennessy-Patterson, Fig 4.5:

48

pack
et /
n.

clock

memory ref. 1 memory ref. 2 FP op. 1 FP op. 2 integer / branch
op.

1 LD F0,0(R1) LD F6,-8(R1) no-op no-op no-op

2 LD F10,-16(R1) LD F14,-24(R1) no-op no-op no-op

3 LD F18,-32(R1) LD F22,-40(R1) FADD F4,F0,F2 FADD F8,F6,F2 no-op

4 LD F26,-48(R1) no-op FADD F12,F10,F2 FADD F16,F14,F2 no-op

5 no-op no-op FADD F20,F18,F2 FADD F24,F22,F2 no-op

6 SD F4,0(R1) SD F8,-8(R1) FADD F28,F26,F2 no-op no-op

7 SD F12,-16(R1) SD F16,-24(R1) no-op no-op DADD R1,R1,#-56

8 SD F20,24(R1) SD F24,16(R1) no-op no-op no-op

9 SD F28,8(R1) no-op no-op no-op BNE R1,R2,Loop

VLIW: an example

• To be noted:

• not all slots within a packet are used, so they are filled in with no-ops.
Generally, it is not always possible to use all slots in each packet:
code and architecture limit the actual usage. In this example,
utilization is roughly 60%.

• 9 clock cycles are required to execute 7 for iterations, an average of
9/7 = 1.29 clock cycles for iteration.

• As already stated, a processor with a different architecture (as an
instance, different FUs or different latencies) would yield different
performances for the same code.

49

Advanced techniques
• VLIW leverages on more advanced compilation techniques, to extract

ILP at compile time. Here are some:
– Static branch prediction. Assumes that branches exhibit always

the same behaviour, or analyses code to infer their behaviour.
– Loop Level Parallelism. Techniques to extract parallelism for

iterations, if there are loop-carried dependencies among iterations.
– Symbolic loop unrolling. The loop is not “unrolled”, but each

packet is filled with independent instructions, even from different
iterations.

– Global code scheduling. Tries to collapse code from different
basic blocks (basic block = a linear sequence of instructions
delimited by conditional instructions, including loops) into
sequences of independent instructions.

50

Hardware support to Static ILP:
predicative instructions

• Compiler techniques to extract ILP work properly when branches can
be correctly predicted (as in for loops).

• When branch behaviour is dubious, control dependencies limit to a
large extent any attempt to exploit parallelism among instructions.

• To partially overcome the problem, a solution is extending the ISA
with new predicative or conditional instructions.

51

• These instructions can be used to eliminate some branches, by
transforming a control dependency into a data dependency, thus
potentially increasing the performances of the processor.

• Actually, predicative instructions are useful also in dynamic ILP,
since they allow to cancel some branches.

52

Hardware support to Static ILP:
predicative instructions

Predicative or conditional
instructions

• Note: in the following we’ll use interchangeably predicative
and conditional instruction.

• A predicative instruction contains a condition that is
evaluated as part of the execution of the instruction.
– if the condition is found to be true, the remaining part of the

instruction is executed normally.
– otherwise, the instruction is transformed into a no-op.

• Many recent architectures have some form of conditional
instruction.

53

• The simplest predicative instruction is the conditional
move: it moves the content of a register to another one if the
associated condition is true. This instruction allows to avoid
branches, in some circumstances.

• Let us consider the C-language instruction “if (A == 0) S =
T;” and let us assume that R1, R2, R3 hold espectively
values A, S, and T. The C-code can be translated into the
following MIPS instructions:

BNEZ R1, Jump // branch if not zero

ADD R2, R3, R0 // R0 always contains 0
Jump: 54

Predicative or conditional
instructions

• With a new conditional instruction that is carried out only if the third
operand is 0, the IF could be translated into the following instruction:

CMOVZ R2, R3, R1 // mov R3 in R2 if R1 == 0

• The true control dependency (ADD depends on BNEZ) is transformed
into in a possible data dependency, according to the instructions that
precede the CMOVZ.

• Eliminating these branches has a very positive impact on
performances in actual pipelines, where branch execution takes a lot
of clock cycles. These branches cannot be easily predicted (as in for
loops) and most times they cannot be predicted at all. Any prediction
results in a 50% misprediction!

55

Predicative or conditional
instructions

• In multiple issue processors, multiple branches could be scheduled for
execution in the same clock cycle, and prediction gets more and more
casual, since branches can depend on one another.

if (A == B) {A = A+1} else if (C == D) {C = C+1}
in this case, the second if depends on the first one, and it is quite

possible that all instructions get issued in the same clock cycle. How
can the second if be scheduled, if the first is still being evaluated?

• Some architectures simply rule out issuing multiple branches in the
same clock cycle.

• Conditional move instructions allow to get rid of some branches, thus
increasing the CPU issue rate.

56

Predicative or conditional
instructions

• An example: a piece of code (a) with an if-then-else can be
translated into a machine code with two branches (b) or into
four predicative instructions (c) (Tanenbaum, Fig. 5.52):

57

Predicative or conditional
instructions

• Conditional move instructions cannot eliminate branches
that control other type of instructions.

• Thus, some architectures implement full predication: all
instructions can be controlled by a predicate.

• These architectures use specific predicative registers that
store the outcome of tests from preceding instructions, so
that subsequent instructions can be controlled accordingly
(thus becoming predicative themselves).

58

Predicative or conditional
instructions

• The Itanium processor has predicative registers used in couples (P1,
P2, ...) and instructions to set such registers.

• As an examples, “CMPEQ R1, R2, P4” sets P4 = 1 and P5 = 0 if R1
== R2. Otherwise, the instruction sets P4 = 0 and P5 = 1.

• Predicative registers are used to control execution of other
instructions. Here is an example (Tanenbaum, Fig. 5.53):

59

Predicative or conditional
instructions

• Predicative instructions are usefull especially in small if-
then-else constructs, since they eliminate difficult to predict
branches; they ease the implementation of more complex
statis ILP techniques.

• Predication is however limited by some factors:
– nullified predicative instructions have used CPU resources, and

have prevented/limited the execution od other instructions.

– Complex brnch combinations cannot be easily transformed into
conditional instructions.

– Conditional instructions can take longer to execute than
conventional instructions.

60

Predicative or conditional
instructions

instructions predicative o
condizionali

• Many architecture only feature a few simple conditional
instructions condizionali, notably conditional move.

• MIPS, SPARC, Alpha, PowerPC, Pentium, dual core and
follow-ups support conditional move.

• Intel IA-64 architecture (Itanium) supports full predication

61

Predicative or conditional
instructions

Static ILP vs dynamic ILP
• While initiallly very different, the two approaches to ILP

have converged, due to advances in sw and hw technology.

• As a rule of thumb, dynamic ILP seems to fit better general
purpose processors, where a complex hardware is viable
(with its associated higher power consumption and cost).

• On the contrary, Static ILP is a foundation for embedded
processors, where cost and power consuption are of the
utmost importance, where applications require a finite set of
programs that can be designed and optimized for best
parallelism among instructions and hardware utilization.

62

The Trimedia TM32
• At the outset of this chapter, it was highlighted that Static

ILP suits peculiarly well embedded applications, which
cannot rely on a very complex / expensive / energy
consuming hardware.

• A typical example of VLIW processor is TriMedia TM32,
designed by Philips and used for multimedia applications in
CD, DVD, MP3 players, television sets and digital
camcorders.

• It is a processor for very specific applications, not for
general purpose ones (as is Itanium II).

63

Trimedia TM32 architecture
• TM32 features clock frequencies between 266 and 300

MHZ; its VLIW instructions specify up to 5 differente
operations that are issued in a single clock cycle. Some slot
can contain no-ops (Tanenbaum, Fig. 8.3).

64

Trimedia TM32 architecture

65

P hilips R es ear ch

IC
S

25
2

cl
as

s,
 F

eb
ru

ar
y

3,
 2

00
0

25

CPU64 Architecture

data
cache
16KB

data
cache
16KB

mmummu

mmummu

64-bit
memory

bus multi-port 128 words x 64 bits register filemulti-port 128 words x 64 bits register file

FUFU FUFU FUFU FUFUFUFU

instruction
cache
32 KB

instruction
cache
32 KB

mmummu

bypass networkbypass network

PCPC
exceptions exceptions

32-bit
peripheral

bus

VLIW instruction decode and launch

Trimedia TM32 architecture

• TM3260 has 10 families of pipelined FUs, and a not pipelined FP
sqrt/div. FU (Tanenbaum, Fig. 8.4):

66

Trimedia TM32 architecture
• TM3260 has 128 general-purpose 32-bit registers, and 4 special

registers (PC, PSW, 2 for interrupt handling)

• TM3260 supports predication for all instructions, by associating them
with a register that nullifies execution, if set to 0.

• TM3260 has no run-time check on compatibility among operations in
an instruction, or among consecutive instructions: it simply executes
them.

• It is the task of the compiler to schedule operations within instructions
, and the sequence of instructions, so that pipeline stalls are minimized
and FU utilization is maximized.

67

Trimedia TM32 architecture
• Hardware complexity is minized, and compilers produce very

optimazed code for the specific architecture (they can use a lot of
compile time …).

• The single flaw of this approach is code size, that is always much
larger than analogous code for RISC processors.

• The code, usually executed from a ROM, is thus compressed:
instructions are de-compressed only at fetch time, when they are read
from the I-cache.

• Still, code is twice as large as in a similar RISC (next chart:
Hennessy-Patterson, Fig. 3.23)

68

Multi-issue: approaches

69

name issue
structure

hazard
detection

scheduling characteristic examples

Superscalar
(static)

dynamic hardware static in-order
execution

Sun
UltraSPARC

II/III

Superscalar
(dynamic)

dynamic hardware dynamic some out-of-
order

execution

IBM Power2

Superscalar
(speculative)

dynamic hardware dynamic with
speculation

out-of-order
execution with

speculation

Intel CPUs,
MIPS R10K,
Alpha 21264,
HP PA 8500,
IBM RS64III

VLIW/LIW static software static no hazards
between issue

packets

Trimedia, i860

EPIC mostly static mostly
software

mostly static explicit
dependencies

marked by
compiler

Itanium,
Itanium II

