
Dynamic
Instruction Level Parallelism (ILP)

• Introduction to ILP
• Data and name dependences and hazards
• CPU dynamic scheduling
• Branch prediction
• Hardware speculation
• Multiple issue
• Theoretical limits of dynamic ILP

1

Instruction Level Parallelism (ILP):
Introduction

• Pipeling partially overlaps instructions execution, thus
leveraging on the potential parallelism embedded in the
instructions.

• This type of parallelism is named “Instruction Level
Parallelism” (usually ILP).

• Static ILP places on the compiler the task of finding
instructions that can be “overlapped” (a POE that gives a
good ROE)

• Dynamic ILP places on the hardware all of the effort
to extract parallelism from any POE 2

Instruction Level Parallelism (ILP)
• The actual amount of parallelism embedded in the

instructions of a program that can be exploited depends
on the pipelining issues examined before. Three are three
types of conflicts:

• structural: limited number of available functional units

• data: an instruction has to wait for the outcome of another
one, and the two instructions cannot proceed in parallel

• control: as long as the outcome of a branch is unknown,
so is the next instruction to be executed

3

Instruction Level Parallelism (ILP)
• In literature, these conflicts are called “hazard” and they

are responsible for pipeline stalls.
• Let us ignore these conflicts, and let us focus on the two

basic ways to increase the level of parallelism embedded
in instructions that can be exploited:

1. Increasing the number of phases in the pipeline
(the so called pipeline depth)

• This increases the number of instruction whose execution
can be potentially overlapped, and so the level of
parallelism (potentially, since hazards are still there…)

4

Instruction Level Parallelism (ILP)

• For a fixed amount of work necessary to carry out an
instruction, splitting the work in more phases (each
performed by a pipeline stage) makes each phase shorter,
so requiring a shorter clock cycle. Otherwise stated:
the CPU clock frequency can be raised.

• Equivalently: for a given multicycle pipelined
architecture, to increase instruction execution speed, it is
possible to raise clock frequency.

5

Instruction Level Parallelism (ILP)

• Higher frequencies imply shorter clock cycles, which
allow for less work; thus the architecture must be re-
designed by breaking down work into a larger number of
phases, each performing less activity …

• This technique has been heavily exploited recently, most
notably in Pentium IV, that sported a peak frequency of 4
GHz with an almost 30-stage pipeline.

6

Instruction Level Parallelism (ILP)
• Intel CPUs evolution (Tanenbaum, Fig. 1.11):

7

Instruction Level Parallelism (ILP)
• Of course, this trend cannot continue indefinitely:

– because of architectural problems: the more complex the
pipeline, the more complex its control unit;

– because of technological limitations: width of paths that
interconnect transistors, paths interference, energy consumption
and heat dissipation.

• The deeper the pipeline depth, the longer the time to
complete a single instruction, the larger the number of
instructions carried out in parallel (potentially…)

8

Instruction Level Parallelism (ILP)
• Instead of increasing pipeline depth (actually, when this

option is no longer feasible), it is possible to replicate
some of the processor functional units:

2. issuing the execution of multiple instructions in
parallel, a technique commonly referred to as “multiple
issue”.

• Multiple issue requires a “larger” datapath, capable of
transferring from one pipeline stage to the following all
informations associated to the instructions issued in
parallel.

• And also more sophisticated functional units:
9

Instruction Level Parallelism (ILP)
a. There must be a number of funtional units for the parallel execution

of instructions. As an example, ALU, integer/floating point
multiplication, and so on.

b. It must be possible to fetch within each clock cycle more
instructions from Instruction Memory, and multiple operands from
Data Memory (cache memories, that store instructions and data,
usually have a “bandwidth” taylored to this goal)

c. It must be possible to address in parallel multiple registers, and
reading/writing the registers used by the different instructions in
execution, in the same clock cycle.

10

Instruction Level Parallelism (ILP)
• In a simple pipelined architecture, with no dependences,

the execution of a new instruction is completed at each
new clock cycle:
Clock Per Instruction (CPI) = 1

• In multiple issue pipelined architecture, it is potentially
possible to complete the execution of more instructions
per clock cycle, thus CPI < 1 (hazards make things a bit
difficult, in reality…)

• Multiple issue architectures are usually refereed to as
“superscalar”, even though this name should be reserved
to “dynamic” multiple issue architectures (to be discussed
shortly…) 11

Instruction Level Parallelism (ILP)

• The basic scheme of a
superscalar architecture.
Actually, pipeline stages are
more than 5, but instruction
execution can be split into 5
main phases (Hennessy-
Patterson, fig. A.29)

12

Instruction Level Parallelism (ILP)
• Modern high level processors combine pipelining with

multiple issue, and can issue 3 to 8 instructions per clock
cycle.

• As an instance, a 3 GHz processor capable of issuing up to
4 instructions per clock cycle would sport a peak
execution speed of 12 billion instructions per second, and
a CPI equal to 0,25.

• Actually, pipeline stalls limit heavily these performances,
and even guaranteeing CPI = 1 is often very difficult…

13

Instruction Level Parallelism (ILP)
• To implement multiple issues, two basic problems must

be tackled:
a. Estabilishing which and how many instructions can be

sent to execution in a given clock cycle. Usually, the
selected instructions are assembled in an issue packet,
and issued in the same issue slot.

b. Solving possible structural hazards, both on data and on
control.

• Multiple issue processors can be split into two large
categories, according to how (and when) these two
problems are solved.

14

Instruction Level Parallelism (ILP)
• In static multiple issue processors (to be discussed in the

next chaporter), it is the compiler (software…) that
chooses the instructions to be issued in parallel (which
informations are required by the compiler?)

• When the processor fetches from IM an “instruction
packet”, it knows already that they can be executed in
parallel without conflicts from hazards among the
instructions.

• The number of instructions in a packet is set a-priori
during processor design, so these are static issue
architectures.

• When most activity to extract parallelism among
instructions is carried out by the compiler, one speaks of
Static Instruction Level Parallelism 15

Instruction Level Parallelism (ILP)
• In dynamic multiple issue processors (discussed in this

chapter) it is the processor that estabilished “at run time”
which instructions to issue, and how to solve conflicts
from hazards.

• The processor decides on the spot even the number of
instructions to issue (with a maximum depending on the
specific architecture): these are dynamic issue
architectures and the scheme is called dynamic
Instruction Level Parallelism

• The two approaches are not completely distinct, in real
cases, and often features from each of them are actually
exploited toghether. 16

Instruction Level Parallelism (ILP)
• Almost all “general purpose” processors (both old ones, such as

Pentium, PowerPC, SPARC, MIPS, and more recent multi-core
ones) basically adopt dynamic ILP.

• In dynamic ILP, instructions are fetched in the order produced by
the compiler, but many architectures implement some form of
pipeline dynamic scheduling: the issue order (that is, the order by
which instructions are forwarded to the EX phase in the pipeline)
can be changed, to minimize the effects of dependences.

• Warning: to fully understand this mechanism, we shall cover first
the single issue case (one instruction per clock cycle), and we will
revert to multiple issue later.

17

Instruction Level Parallelism (ILP)
• Let us consider this code fragment, supposing that the value

addressed by 100(R2) is not in the cache memory:

LD F0, 100(R2)
FADD F10, F0, F8
SUB R12, R8, R1 // what if it were: “FSUB F12, F8, F1” ?

• The execution of FADD depends on LD, but in a standard pipeline
(usually referred to as statically scheduled pipeline) instructions
flow one after another in the pipeline: until FADD can be forwared
to the EX phase, it blocks the execution of DSUB, which could be
executed, since it has no dependences from preceding instructions.

18

Instruction Level Parallelism (ILP)
• Instead, processors with a dynamically scheduled

pipeline are capable of detecting that DSUB does not
depend on preceding instructions, and can forward it to
the esecution to an integer unit, while FADD is still
waiting for the value in F0.

• Instructions can overrun each other within the pipeline
and this implies not only an out-of-order execution, but
also their out-of-order completion.

• Otherwise stated, instructions can execute the MEM and
WB phases in an order different from that by which they
are ordered in the program.

19

Instruction Level Parallelism (ILP)

• In a system working with static ILP, the compiler could
detect such a potential stall, and could generate code in
which the DSUB is moved before the LD.

• With static ILP, the compiler carries out this and more
complex code movements, to produce a more efficient
execution.

• Obvioulsy, all these transformations must preserve the
global behavior of the program (program semantics)

20

Instruction Level Parallelism (ILP)
• In dynamic ILP, some form of dynamic branch

prediction is customary: for each executed branch
instruction, the CPU hardware records the outcomes of
preceding executions (that is, whether that branch was
taken or not).

• When the same branch is executed, past history of that
branch is used to predict if the brach will be taken, and so
choosing the next instruction to execute.

• Obviously, this techniques works only for branches that
do have an history, namely, those that are executed more
than once

21

Instruction Level Parallelism (ILP)
• A natural extension of branch prediction is hardware

speculation. Let us consider this situation:

FMUL F4, F0, F2 // may need 10 clock cycles
BLE F4, #0.66666, next // branch if less or equal
FADD F1, F1, #0.5
ADD R1, R1, #2
FADD F2, F2, #0.25
ADD R2, R2, #1

next:

22

Instruction Level Parallelism (ILP)
• The instructions controlled by the branch can be (possibly) executed

only when the outcome of BLE is known, which in turn depends on
the result of FMUL.

• The processor can speculate on the outcome of the branch, on the
basis of some form of branch prediction, and if the prediction is for
a not-taken branch, it could issue the instructions within the
highlighted block.

• Of course, the prediction can be wrong, and the processor must be
capable of undoing the effects of the executed instructions, which
should not have been issued.

• Speculation requires a very sophisticated hardware, and it is seldom
applied in processors supporting dynamic ILP.

23

Dependences and hazards
• Let us start discussing dynamic ILP by better formalizing

the notion of dependence among instructions, which is the
primary effect in limiting the exploitation of the parallelism
embedded in the instructions of a program.

• This discussion will be useful even when we will cover
static ILP, where it is the compiler that has the task of
understanding which instructions can be executed in
parallel, being independent of one another, and which
cannot.

• In dynamic ILP instead, it is the processor that must
discover possible dependences among instructions, right at
the issue moment, and must be capable of handling them.

24

Dependences and hazards

• Dependences are a feature of programs (algorithms) and
have no relationship whatsoever with hardware.

• Hazards are a feature of hardware, specifically of any
microarchitecture for a given ISA.

• A certain set of dependences can give rise to hazards on a
given microarchitecture and to NO hazards on a different
microarchitecture.

25

Dependences and hazards
• Establishing how an instruction depends on another is

instrumental to assessing the amount of parallelism in a
program, and how it can be exploited.

• If two instructions are independent, they can be executed
in parallel and/or in any order in the pipeline, if there are
enough resources (that is: enough functional units)

• If two instructions are dependent, they must be executed
in order, and can be executed in overlapped way only to a
certain degree.

• So, to exploit ILP, it is mandatory to establish instructions
dependences.

26

Dependences
• Let us examine dependences that can exist in a group of

consecutive instructions that do not contain branches,in
the following “linear segment”.

• Alternatively, we might assume that the CPU always
knows if the branch will be taken (using some form of
prediction) that is to say, we disregard control
dependences, so far.

• There are two types of dependences:

1. data dependences

2. name dependences
27

Data dependences

• Instruction j is (truly) data dependent on instruction i if
at least one of the following conditions holds:

1. i produces a value that can be used by j

2. j is data dependent on k, and k is data dependent on i

• Condition 2 simply states that there can be an arbitrary
long chain of dependences.

• i is the producer, j is the consumer

28

Data dependences

LOOP: LD F0, 0 (R1)
FADD F4, F0, F2
SD F4, 0 (R1)
ADD R4, R4, #-8
BNE R4, R5, LOOP

• The second instruction is data dependent on the first, so is
the third on the second, and the fifth on the fourth.

• The arrows show the order of execution of instructions,
which can cause stalls in the pipeline.

29

Name dependences
• A name dependence exists when two instructions use the

same register or memory location, but there is no
transmission of data between instructions using the same
name (instructions are not data dependent)

• If instruction I precedes instruction j, there is:
1. an antidependence between i and j if j writes in a register (or

memory location) read by i. The initial order must be maintained
for i to read the correct value;

2. a output dependence if i and j write in the same register (or
memory location). The order must be preserved for the final
value to be that written by instruction j.

30

Name dependences
• Here are some examples for antidependence and output

dependence:
FDIV F0, F2, F4
FADD F6, F0, F8
FSUB F8, F10, F14
FMUL F6, F10, F12

• Antidependence between FADD (waiting for FDIV) that
reads F8, and FSUB that wants to write F8. What happens
if FSUB modifies F8 before FADD has used it for the
sum?

• Output dependence between FADD and FMUL: what
happens if FADD (because of FDIV) completes after
FMUL?

31

Eliminating name dependences
• A name dependence is not a true data dependence, since

there are no values transmitted through instructions (this is
why we say true data dependence).

• Instructions involved in a name dependence can be
executed concurrently if the register name (or the memory
address) is changed, to avoid conflicts (this is much easier
with registers, an advantage of RISC instructions).

• Renaming can be done statically by the compiler, or
dynamically by the hardware.

32

Eliminating name dependences
• Here is an example on the previous code fragment, to remove

antidependences and output dependences with proper register
renaming:

FDIV F0, F2, F4 FDIV F0, F2, F4
FADD F6, F0, F8 FADD F6, F0, F8
FSUB F8, F10, F14 FSUB F9, F10, F14
FMUL F6, F10, F12 FMUL F11, F10, F12

• Obviously, for renaming to be possible, both F11 and F9 must be
available and free. These changes must be accounted for in
instructions following those just modified.

• What about resorting to some invisible (at the ISA level) CPU
register ?

33

Dependences and hazards
• The different problems caused by data and name

dependences can be categorized as follows. Let i and j be
two instructions, where i occurs before j. There can be
three types of data hazards:

1. RAW (Read After Write): j tries to read a register (but even a
memory location) before i writes it. j reads in errors the old, stale
value.

– It is due to a true data dependence, and it is by large the most
common. Instructions order has to be preserved so that j receives
the correct value from i.

– Example: LD R2, #100(R3) followed by ADD R5,R4,R2. The
pipeline structure can produce a RAW hazard.

34

Dependences and hazards
• Basically, with a RAW instruction j cannot procede its

execution because the data it requires are not yet
available.

• The processor must detect the dependence of j from a
previous instruction and withhold execution until the
missing data is available.

• Forwarding can solve some RAW hazards:
ADD R1, R2, R3

SUB R4, R1, R5
AND R6, R1, R7

• but some remain: 35

Dependences and hazards
• especially when “long lasting” instructions are involved”:

LD R1, 0(R2)

SUB R4, R1, R5
AND R6, R1, R7

• In a processor with a statically scheduled pipeline, it is
necessary to suspend SUB (and so AND too) for a clock
cycle, waiting for the data from LD to be available
(assuming the data are in the cache, otherwise…)

• This effect can be obtained by repeating the ID phase of
SUB (it is decoded again, and the registers are read again)
and the IF phase of AND (fetched again from IM) 36

The data item addressed by LD will be
present in MEM/WB register only at the
endo of clock cycle 4, but SUB requires
it at the beginnign of that cycle.

Dependences and hazards
2. WAW (Write After Write): j tries to write a register before it is

written by i. The double write terminates in the wrong order,
leaving in the register the value produced by i instead of that
produced by j.

– It is due to and output dependence, and only happens in pipelines
where an instruction can proceed even if a previous one is stalled.

– Example: in a pipeline with a multi-stage floating point unit, a
simple case of WAW hazard:

FDIV F0, F2, F4
FADD F6, F0, F8 stalled by FDIV because of RAW on F0
FSUB F8, F10, F14 proceeds (is this possible ?)
FMUL F6, F10, F12

How can this case be solved?
37

Dependences and hazards
2. WAW (Write After Write).

– Another example: in a pipeline with a multi-stage floating point
unit, a simple case of WAW hazard:

FMUL F4, F5, F6
LD F5, #0 (R7)
FADD F4, F7, F10
SD F5, #0 (R8)

– What is the meaning of this piece of code ?

38

Dependences and hazards
2. WAW (Write After Write):

Example: in a pipeline with a multi-stage floating point unit, a
simple case of WAW (is this a hazard ?):
LD F4, #0 (R7) a long lasting instruction
SD F7, #0 (R8)
FMUL F4, F5, F6

39

Dependences and hazards

3. WAR (Write After Read): j tries to write a register before it is
read by i. i reads in error the new value.

(i) FADD F6, F0, F8 FADD F6, F0, F8
(j) FSUB F8, F10, F14 FSUB F9, F10, F14

– It is due to an antidependence, and it seldom ensues, since in
most pipelines, operands are read (stage ID) “long” before being
written (stage WB).

– WAR hazards can arise if instructions can write results in some
early stage of the pipeline and can read operands in final stages.
WAR hazards are also possible in instructions are re-ordered (try
to build a case for a WAR hazard).

• What about RAR hazards?
40

Data and name hazards reduction
through dynamic scheduling

• Pipeline dynamic scheduling is the set of CPU run-time
hardware techniques that help reduce the frequency and
the length of pipeline stalls, including possibly a change
in the order of instructions, so as to minimize RAW
hazards effects.

• Pipeline dynamic scheduling includes register renaming
(at instructions execution time) to reduce effects by WAW
and WAR hazards.

41

Dynamic scheduling:
Tomasulo’s approach

• The basic technique for dynamic scheduling was
developed already in 1967 for IBM360/91 by Robert
Tomasulo, a researcher with IBM

– To minimize RAW hazards, it tracks availability of operands,
independently of the execution order of instructions.

– To minimize WAW and WAR hazards, it uses a set of internal
registers (invisible to the ISA level) to carry out register
renaming.

• Variations on the original techniques are currently used in
all CPUs that implement dynamic ILP.

42

Pipeline dynamic scheduling
• The basic feature of Tomasulo’s scheme are reservation

stations associated to functional units, where instructions,
fetched from IM and decoded, wait until ready to be
executed (Patterson-Hennessy, fig. 6.49 modified).

43

Register
file

Pipeline dynamic scheduling

The basic structure of
the MIPS F.P. unit
that implements
dynamic ILP
according to
Tomasulo’s scheme.
Disregard the
“Instruction queue”
and think as it were
the Instruction
Memory (Hennessy-
Patterson, Fig. 3.2)

44

Pipeline dynamic scheduling
• Each reservation station can hold one or more instructions waiting

to use the corresponding funtional unit and, for each instruction:

– the operands that will be used by that instruction or
– the names of the reservation stations that will produce those

operands.
• a Common Data Bus (CDB) connects all functional units, registers

and reservation stations, and allows to transmit the result produced
by a functional unit to all units that need it, in parallel

• In Tomasulo’s scheme, the execution of an instruction can be split
into three “macro-steps” (each can correspond to more pipeline
stages):

45

Pipeline dynamic scheduling

• ISSUE. An instruction is fetched from instruction memory and is
decoded (phases IF and ID in the simple pipeline). If a proper
reservation station is available, the instruction is forwarded to it.

• If there are no reservation station, the pipeline stalls.

• If the instruction operands are available in the register file, or in
some reservation station, they are fetched and forwarded to the
reservation station where the instruction has been moved: the
instruction is ready for execution in the corresponding functional
unit.

• For each missing operand, the reservation station receives the name
of the F.U. that will produce that operand.

46

Pipeline dynamic scheduling

• Note that knowing that the instruction operands:
– can be in another reservation station, or

– still have to be produced by an instruction currently in another
reservation station

• implies that the CPU control logic, during the ISSUE
phase, has checked previously issued instructions, already
forwarded to some reservation station, for dependences
with current one.

47

Pipeline dynamic scheduling
• EXECUTE: (EX in the basic scheme) the instruction is in a

reservation station. If one or more operands are not yet available,
the CDB is checked for them.

• When an operand is available (it is the outcome of another
instruction, and it is transmitted to the register file through the
CDB) it is “captured” and it is forwarded to the reservation station
station waiting for it.

• When all operands are available, the instruction can be sent for
execution in the corresponding F.U.

• If more instructions are ready for execution in the same F.U., a
FIFO policy is used to choose the one to execute.

48

Pipeline dynamic scheduling
• In LOAD and STORE instructions, execution is plit in two steps:

• in the first step, the effective memory address is computed, when
the base register is available, and the computed address is stored in
a load or store buffer

• LOAD instructions can complete (second step) as soon as the (data)
memory access unit is available.

• STORE instructions can possibly wait for the data to be stored in
RAM.

• To prevent hazards while accessing RAM locations, the execution
order of LOAD and STORE instructions obeys some additional
constraints, that will be discussed later through an example (what
makes these hazards so difficult to manage?)

49

Pipeline dynamic scheduling
• WRITE RESULT: (MEM and WB in the basic scheme) when the

instruction executed in the F.U. has produced its result, it is written
on the CDB, and it is thus forwarded to the register file, to the
reservation stations and to the load/store buffers waiting for it.

• STORE instructions write data to the data memory in this phase,
when both the address and the data for that address are ready.

• Analogously, LOAD instructions fetch data from RAM and write it
into the destination register.

50

Pipeline dynamic scheduling
• The reservation stations, the register file, load and store buffers

have internal registers (unavailable to the ISA level) used for
storing the infos required to handle the whole procedure

• When an instruction I is in a station, it refers to an operand it is
waiting for by writing in an internal register of that station the
number of the station S holding the instruction that will produce the
result required by I.

• When S produces a result to be written (for example) in R5, the
value is transmitted through the CDB to R5 and to all reservations
stations where I is waiting that result.

51

Pipeline dynamic scheduling
• At this point, if another instruction wants to overwrite R5, it can do

so with no harm for I, that has already a local copy of R5 saved in
its reservation station.

• Otherwise stated, the reservation station internal registers act as
temporary registers, and are used to implement register renaming.

• Moreover, an instruction can be executed as soon as its operands are
available, possibly before other instructions that preceded it in the
IM: the pipeline is scheduled dynamically.

• Obviously, if two independent instructions require the same F.U.,
they cannot be executed in parallel (if the F.U. is itself a pipeline,
they can proceed in pipeline fashion)

52

Pipeline dynamic scheduling
• Let us know examine some cases with Tomasulo’s scheme,

assuming that each reservation station can hold a single instruction.
Each station has seven fields:

– Op: the operation to be executed on certain operands

– Qj, Qk: the stations that will produce the result required by Op.
A value zero means that the operand is already in Vj or Vk

– Vj, Vk: operands values (for a LOAD or a STORE, Vj contains
the offset)

– A: contains initially the immediate value for the LOAD or
STORE, and the effective address, once computed

– Busy: The station and its corresponding F.U. are occupied

53

Pipeline dynamic scheduling
• Each register in the register file has a field:

– Qi: the number of the station containing the instruction whose
result is bound for the register.

– If Qi is empty or has a value 0, there is no instruction that is
computing a value for that register.

• LOAD and STORE buffers each have a field, A,
containing the effective address on which the operation
will work.

54

Dynamic scheduling : example 1
LD F6, 34 (R2)
LD F2, 45 (R3)
MUL F0, F2, F4
SUB F8, F2, F6
DIV F10, F0, F6
ADD F6, F18, F12

55

WAR hazard on ADD: it writes F6,
that is just used by DIV. If ADD
completes before DIV reads F6, a
wrong value is used. (Hennessy-
Patterson, Fig. 3.3)

Dynamic scheduling : example 1
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.3)

56

tag busy Oi. Vj Vk Qj Qk A

Field F0 F2 F4 F6 F8 F10 F12 ... F31

Qi

Dynamic scheduling : example 1
LD F6, 34 (R2)
LD F2, 45 (R3)
MUL F0, F2, F4
SUB F8, F2, F6
DIV F10, F0, F6
ADD F6, F18, F12

57

Instruction Issue Execute Write Res.
LD F6, 34 (R2) Ö Ö Ö

LD F2, 45 (R3) Ö Ö

MUL F0, F2, F4 Ö

SUB F8, F2, F6 Ö

DIV F10, F0, F6 Ö

ADD F6, F8, F2 Ö

WAR hazard on ADD: it writes F6,
that is just used by DIV. If ADD
completes before DIV reads F6, a
wrong value is used. (Hennessy-
Patterson, Fig. 3.3)

Dynamic scheduling : example 1
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.3)

58

tag busy Oi. Vj Vk Qj Qk A

load1 yes load 34+[R2]

load2 yes load 45+[R3]

float1 yes MUL [F4] load2

fadd1 yes SUB mem[34+[R2]] load2

fdiv1 yes FDIV mem[34+[R2]] float1

fadd2 yes add [F18] [F12]

Field F0 F2 F4 F6 F8 F10 F12 ... F31

Qi float1 load2 fadd2 fadd1

Dynamic scheduling : example 1
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.3)

59

tag busy Oi. Vj Vk Qj Qk A

load1 yes load 34+[R2]

load2 yes load 45+[R3]

float1 yes MUL [F4] load2

fadd1 yes SUB mem[34+[R2]] load2

fdiv1 yes FDIV mem[34+[R2]] float1

fadd2 yes add [F18] [F12]

Field F0 F2 F4 F6 F8 F10 F12 ... F31

Qi float1 load2 fadd2 fadd1

Dynamic scheduling : example 1
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.3)

60

name busy Oi. Vj Vk Qj Qk A

Load1 no

Load2 yes Load 45+Regs[R3]

Add1 yes SUB Mem[34+Regs[R2]] Load2

Add2 yes ADD Add1 Load2

Add3 no

Mult1 yes MUL Regs[F4] Load2

Mult2 yes DIV Mem[34+Regs[R2]] Mult1

Field F0 F2 F4 F6 F8 F10 F12 ... F31

Qi Mult1 Load2 Add2 Add1 Mult2

Dynamic scheduling : example 1
• please note:

– Regs[] shows register file access

– Mem[] data memory

– the second Load has completed the computation of the effective
address and it is waiting to access the data memory unit

– the SUB has an operand already available (Vk) and waits for the
second from the outcome of the second LOAD (Qj)

– ADD waits for its opernads from SUB (Qj) and from the
second LOAD (Qk): as soon as available, the ADD can start
execution

– the WAR hazard is solved with register renaming: DIV does
not get its second operand from F6, but from Vk.
Completion of ADD before DIV causes no harm. 61

Pipeline dynamic scheduling
• Tomasulo’s scheme has two basic characteristics (that, by the way,

make it superior with respect to other simpler schemes, such as
scoreboarding, an obsolete dynamic scheduling):

1. operand access is distributed

– This is obtained by using multiple reservation stations and the
CDB. When more instructions are waiting for the same operand
A (the other one being already available), as soon as A is ready
all instructions can be launched (provided they use different F.U.,
or these are pipelined).

– If the operands should be fetched from the register file, each F.U.
should access sequentially the register holding the operand.

62

Pipeline dynamic scheduling
2. WAW and WAR are eliminated

– This is obtained by register renaming on reservation station
internal registers, and by forwarding operands just produced to
all stations awaiting for them, as soon as possible and in parallel.

– Let us consider the WAR example just discussed. If the first
LOAD had not yet completed, Qk for DIV would contain Load1,
and DIV would be independent of ADD.

– ADD can execute without waiting for DIV to read its operands
(specifically the second one)

63

Dynamic scheduling: example 1a

• With the same code as the previous example, let us
consider the situation when MUL instruction is ready to
produce its result (Hennessy-Patterson, Fig. 3.4):

64

Instruction Issue Execute Write Res.
LD F6, 34 (R2) Ö Ö Ö

LD F2, 45, (R3) Ö Ö Ö

MUL F0, F2, F4 Ö Ö

SUB F8, F2, F6 Ö Ö Ö

DIV F10, F0, F6 Ö

ADD F6, F8, F2 Ö Ö Ö

Dynamic scheduling: example 1a
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.4)

65

nome busy Op Vj Vk Qj Qk A

Load1 no

Load2 no

Add1 no

Add2 no

Add3 no

Mult1 yes MU
L

Mem[45+Regs[R3]] Regs[F4]

Mult2 yes DIV Mem[34+Regs[R2]] Mult1

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Mult1 Mult2

Pipeline dynamic scheduling
• The real effectiveness of Tomasulo’s scheme in handling name and

data hazards shows best in loop management.

• In the following code fragment, let us assume that the CPU assumes
that the branch will be taken (with static branch prediction:
backwards branches are taken, or another dynamic branch
prediction technique to be covered later).

Loop: LD F0, 0 (R1) (Hennessy-Patterson, Fig. 3.6)
MUL F4, F0, F2 // multiplies by a scalar in F2
SD F4, 0 (R1) // the elements of an array
ADD R1, R1, -8
BNE R1, R2, Loop; //branches if R1 <> R2

66

Pipeline dynamic scheduling

• If the CPU is able to fetch a new instruction from IM at every clock
cycle, reservation stations allow to sustain the concurrent execution
of instructions from different (consecutive) iterations, and the
stations themselves act as additional registers.

• In the code fragment just considered, let us assume that all
instructions from two consecutive iterations have already gone
through the ISSUE phase, but none has completed.

• Also, let us not consider the ADD operation, that only handles loop
management, and let us assume that the branch is taken

67

Dynamic scheduling: example 2
Loop: LD F0, 0 (R1) (Hennessy-Patterson, Fig. 3.6)

MUL F4, F0, F2 // / multiplies by a scalar in F2
SD F4, 0 (R1) // the elemts of an array
ADD R1, R1, -8
BNE R1, R2, Loop; // branch if R1 <> R2

68

Instruction Iteration Issue Execute Write Res.
LD F0, 0 (R1) 1 Ö Ö

MUL F4, F0, F2 1 Ö

SD F4, 0 (R1) 1 Ö

LD F0, 0 (R1) 2 Ö Ö

MUL F4, F0, F2 2 Ö

SD F4, 0 (R1) 2 Ö

Dynamic scheduling: example 2
• After set up, there are two consecutive iterations of the loop in

execution, a feature known as dynamic loop unrolling, with clear
gains in execution speed.

• The critical point is the execution of LOAD and STORE from
different iterations. They can be executed in any order, if they
access different addresses, but if they use the same address, and
hazards ensues as follows:

– WAR, if the LOAD precedes the STORE and they are executed
out of order

– RAW, if the STORE precedes the LOAD and they are executed
out of order

– (n.b.: exchanges STOREs causes a WAW)
69

Dynamic scheduling: example 2
• To establish if a LOAD can be executed, the CPU must

check if any STORE not yet completed and preceding the
LOAD uses the same memory location (RAW hazard)

• Similarly, a STORE must wait if other STORE or LOAD
not yet completed and preceding the STORE use the same
memory location (WAW and WAR hazard)

• To detect these hazards, the CPU must have computed and
stored all RAM addresses associated to any operation
involving a memory access preceding the one being
scheduled.

70

Dynamic scheduling: example 2

• A simple way to do so is to compute effective memory
addresses (immediate + base register, in our ISA)
according to the sequel of instructions in the program.

• Relative order must be preserved only for STORE vs
other STOREs and LOADs, while LOADs can be
interchanged freely among themselves (why ? ..)

71

Dynamic scheduling: esempio 2

• LOAD: let us assume that effective addresses are computed in
program order: when the computation for a given LOAD is
completed, the CPU examines field A of all active STORE buffers,
to detect address conflicts.

• If the LOAD address matches any active entry in a STORE buffer,
the LOAD is not forwarded to the LOAD buffer until the the
conflict is solved (that is, the relative STORE has completed).

• STORE: as with the LOAD, but the CPU controls both STORE and
LOAD active buffers, because STOREs to a given address cannot
be reorder with respect to LOADs from the same address.

72

Dynamic scheduling: esempio 2

73

Instruction Iteration Issue Execute Write Res.
LD F0, 0 (R1) 1 Ö Ö

MUL F4, F0, F2 1 Ö

SD F4, 0 (R1) 1 Ö

LD F0, 0 (R1) 2 Ö Ö

MUL F4, F0, F2 2 Ö

SD F4, 0 (R1) 2 Ö

Loop: LD F0, 0 (R1) (Hennessy-Patterson, Fig. 3.6)
MUL F4, F0, F2 // multiplies by a scalar in F2
SD F4, 0 (R1) // the elements of a vector
ADD R1, R1, -8
BNE R1, R2, Loop; // branch if R1 <> R2

Hennessy-Patterson, Fig. 3.6:

74

nome busy Op Vj Vk Qj Qk A

Load1 yes Load Regs[R1]

Load2 yes Load Regs[R1]-8

Add1 no

Add2 no

Add3 no

Mult1 yes MUL Regs[F2] Load1

Mult2 yes MUL Regs[F2] Load2

Store1 yes Store Regs[R1] Mult1

Store2 yes Store Regs[R1]-8 Mult2

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Load2 Mult2

Dynamic scheduling: example 2
– Try to describe the status of reservation stations and to

analyse completion (the write phase) of loads and
stores in the following situation:

75

Instruction Iteration Issue Execute Write Res.
LD F0, 0 (R1) 1 Ö Ö Ö

MUL F4, F0, F2 1 Ö Ö

SD F4, 0 (R1) 1 Ö Ö

LD F0, 0 (R1) 2 Ö Ö Ö

MUL F4, F0, F2 2 Ö Ö

SD F4, 0 (R1) 2 Ö Ö

Dynamic scheduling: notes
• As already highlighted, all modern processors supporting dynamic

scheduling use some variation of Tomasulo’s scheme.

• Dynamic ILP requires a complex and costly hardware (each
reservation station must be realized as a high speed, associative
buffer, to minimize delays) and a very sophisticated control logic.

• The CDB itself requires a complex and high speed circuitry.

• A dynamically scheduled pipeline can have very good performances
(close to one instruction completed per clock cycle – we do not
consider so far multiple-issue architectures), provided branches
are predicted in a most accurate manner.

76

Branch Prediction (BP)
• We have already introduced the issues of control. Let us

consider the instructions:

ADD R1, R4, R5
BNE R1, R2, branchtag;
SUB R5, R6, R7

branchtag: ADD R5, R6,R7

• In theory, until the outcome of the comparison between
R1 and R2 is known, the CPU does not know which is the
next instruction to fetch (SUB or ADD), and should stall
the pipeline.

77

Branch Prediction (BP)
• In RISC architecture, by analyzing the various types of

programs, it turns out that there is a branch every 4-:-7
instructions.

• In a 5-stage pipeline with “aggressive” branch execution
in only 2 clock cycles, the pipeline must be stalled for 1
clock cycle, waiting for the comparison outcome, thus
roughly 1/5 of all clock cycles are wasted.

• In real architectures, pipelines are much deeper in stages,
and since comparison result is known only after quite a
number of clock cycles, the waste is much larger.

78

Branch Prediction (BP)
• A simple yet effective alternative consists of fetching

anyway the instructions that “follow” the branch (SUB in
the above example) and of starting their execution in the
pipeline.

• It is a very simple form of static prediction: the branch is
supposed not-taken.

• If the prediction is correct, no clock cycle is wasted

• Otherwise, the pipeline must be flushed, with proper
control signals from the CU, by eliminating all
instructions following the branch, that should not have
been executed.

79

Branch Prediction (BP)

• In a misprediction, the waste in clock cycles is the larger,
the deeper the CPU, that is the more apart the stage in the
pipeline that executes the comparison.

• Unfortunately, any static assumption on branch behaviour
cannot guarantee a sufficiently low error rate

• All modern processors apply some form of dynamic
branch prediction, with the outcome of the branch
speculated on the basis of the “history” of that branch,
namely previous executions of the same instruction.

80

Branch Prediction (BP)
• Branch prediction (the dynamic version, from this point

onward) is effective because many branch instructions in
the programs are executed many times, and they tend to
behave as in the preceding cases.

• The most obvious instance is a branch that controls a loop:
if a program uses a loop, it is assumed that the instructions
within the body of the loop are executed many times, and
consequently the branch will have the same behaviour
almost all of the times.

• No branch can be reliably predicted if it is executed only
once …

81

Branch-Prediction Buffer
• The most simple branch prediction technique is using a

branch prediction buffer: an associative memory
addressed with the n least significant bits of a branch
instruction address.

• Every entry in the buffer contains two fields:
– the n least significant bits of the memory address where the

branch instruction is located (it is the key into the associative
memory)

– a prediction bit that stores the outcome of the last decision
taken for that branch

Actually, the buffer is a cache for branch instructions.
82

Branch-Prediction Buffer
• At the first execution of the branch, the relevant

information (address and prediction bit) are used to update
the buffer.

• If the branch is executed again, and its prediction bit says
that the branch must not be taken, the CPU continues to
execute the instructions that follow the branch.

• Meanwhile, the branch instruction completes execution,
and if the prediction is wrong (the branch must be taken),
the pipeline is flushed and execution is restarted with the
destination instruction. The prediction bit is
complemented.

83

Branch-Prediction Buffer
• Question (1): what happens if the prediction bit says that

the branch must be taken ?

• Question (2): and what if this prediction is wrong ?

• Question (3): how can one know if the data in a specific
entry are actually specific of the branch that is being
executed ?

84

Branch-Prediction Buffer
• Actually, this form of prediction can produce more errors

than one can expect.

• Let us consider a loop executed 9 times, after which the
loop exits, to re-enter in a later phase. What is the
accuracy of the prediction?

• After 9 iterations, a prediction error cannot be avoided:
the prediction error calls for another iteration, but the loop
is finished. The bit is complemented.

• When the program re-enters the loop, the first prediction
is wrong once again ...

85

Branch-Prediction Buffer
• To prevent this problem, usually a new scheme is used,

a (local) 2-bit predictor: a prediction must be wrong
twice before it is changed

• The two bits are used as a counter:
– When a branch is taken, the counter is incremented by one (with

a saturation to 11)

– When it is not taken, it is decremented (with saturation to 00)

• If count = 11 or 10 à prediction taken

• If count = 00 or 01 à prediction not taken

86

Branch-Prediction Buffer
• Actually, this is a 4-state automaton (Hennessy-Patterson,

Fig. 3.7, Patterson-Hennessy fig. 6.39) :

87

Branch-Prediction Buffer
• The two-bit scheme, though more complex, works well if,

for each branch executed, the ratio between taken and not
taken instances is really unbalanced.

• In this case, the 2-bit scheme is considerably more
efficient than the 1-bit scheme.

• Since 2 bits yield a better prediction than 1, it could be
natural to further increase prediction accuracy by moving
to a 3-bit scheme

• Oddily enough, prediction accuracy does not increase
effectively using more than 2 bits.

88

Branch-Prediction Buffer
• Moreover, the efficacy of the scheme depends also on the

number of entries in the associative memory holding the
prediction bits for branch instructions.

• Typically, these buffers are caches with 4096 entries, a
number considered sufficient in most situations (though
this does not guarantee that the bits of the correct branch
are indeed used…).

• Simulations have shown that larger buffers do not offer
effectively better preformances

89

Branch-Prediction Buffer
• prediction accuracy for 2-bit, 4096-entry BPB (Hennessy-

Patterson, Fig. 3.8):

90

Branch-Prediction Buffer

increase in accuracy with
a 2-bit BPB and an
infinite number of entries
with respect to 4096
entries: almost no
difference !! (Hennessy-
Patterson, Fig. 3.9).

91

Branch-Prediction Buffer
• With any prediction scheme, there are limits to the precision that

can be reached (as an instance, the example just considered does not
increase performance in consistent way by moving beyond 2 bits
and 4096 entries). Furthermore, prediction capability varies on the
basis of the actual application in execution.

• Modern processors use advanced variations on the BP techniques
examined so far, that guarantee actual increments to precision
accuracy.

• Correlating predictors: the 2-bit predictors of two consecutive
branches are correlated, thus combining the history of a branch with
the behaviour of another “nearby” branch.

• Tournament predictors: each branch has two predictors, a 1-bit
and a 2-bit one, and every time the prediction is based on the
predictor that behaved best in the preceding case. 92

Branch-Prediction Buffer
Average mis-prediction rate in different benchmarks and in 3 different
prediction techniques (Hennessy-Patterson, Fig. 3.18):

93

Branch Target Buffer
• So far, an important feature of BP has been neglected: il the

predictor votes for a taken branch, the CPU cannot start fetching the
destination instruction until its address is known (PC + offset in the
branch instruction).

• To overcome this problem , many CPUs use a branch target
buffer, (also branch prediction cache), that, for each branch,
stores the destination address to be used if the prediction is “taken”

• The value “PC + offset” is computed and stored in the BTB the first
time the branch is executed.

• In subsequent executions, no computation is necessary: in case of
“taken” prediction, the PC is loaded with the destination address
stored in the buffer.

94

Branch Target Buffer
Each entry in the buffer stores a branch instruction from the
program in execution (Hennessy-Patterson, Fig. 3.19):

95

Hardware speculation

• In BP, the CPU starts executing instructions before
knowing if they should actually be run.

• If the prediction turns out to be wrong, instructions in
pipeline in stages before that of the branch are nullified,
and the correct instruction is stared.

• Let us consider the situation depicted in the next chart,
where a true data dependence involving the branch can
stall the CPU much longer than the time required to
execute the branch.

96

Hardware speculation
1. LD F4, 100(R4) // value not in cache…
2. BLE F4, #0.66666, jump // branch if less or equal
3. FADD F1, F1, #0.5
4. DADD R1, R1, #2
5. jump: FADD F1, F1, #0.25
6. DADD R1, R1, #1

• If the data loaded from the LOAD is not in the cache, it might be
necessary using tenths of clock cycles to fetch it from RAM.

• One can use BP on BLE, and start and complete the execution of
the sums controlled by the branch, if this requires a number of clock
cycles much shorter than that required to fetch the date for the BLE.

• But what is the prediction is wrong?
97

Hardware speculation
• Hardware speculation is the technique used in dynamic

ILP to handle cases such as this.

• Branch controlled instructions are executed as if the
prediction were correct (usually, one speaks of branch
speculation, and of speculative instructions)

• However, it must be always possible to nullify speculative
instructions, should the prediction be wrong.

• Question: in the example above, what about instructions
that are not controlled by BLE (instructions 5 and 6)?

98

Hardware speculation
• The problem is that instructions 3 and 4, controlled by the

branch, pass results on to instructions 5 and 6, that should
be executed anyway.

• If the LOAD takes a lot of time, the CPU can execute
instructions 5 and 6 before knowing if it should eceuted 3
and 4 also.

• However, if 3 and 4 should not be executed, the values
computed by 5 and 6 are wrong, and the two instructions
must be executed again from scratch.

• This is to say that 5 and 6 also must be handled as
speculative instructions, until the true output from BLE is
known.. 99

Hardware speculation
• In Tomasulo’s scheme, hardware speculation requires a commit

unit: a bank of internal registers known as Reorder Buffer (ROB)
where instructions are parked, until is is known if they should
actually have been executed (Patterson-Hennessy, fig. 6.49
modified).

100

Register
file

Hardware speculation
• In the ROB executed instructions are stored along with the result

they have computed, and enties in the ROB are a further support to
register renaming.

• When the CPU “knows” (the “how” to be described shortly) that an
instruction must effectively be executed, it performs the commit on
it: it is cancelled from the ROB, and the destination register (or
RAM memory in STORE instructions) is updated.

• If the CPU discovers that the instruction should not have been
executed (or executed with other operands), it simply removes it
from the ROB.

101

Hardware speculation

• Even though instruction execution can be performed out-
of-order, commit must be carried out in-order, namely in
the order in which the instructions have entered the CPU;
this justifies the name ROB, that is actually managed as a
circular queue.

• This constraint makes dependences control much simpler,
and lessen the burden of handling exceptions, a very
complex issue with speculation.

• Indeed, what if a speculative instruction raises an
exception, and then it turns out that it should not be
executed altogether?

102

Hardware speculation
• Each ROB entry has 4 fields:

1. instruction type: branch, that produces no result; store,
that writes to RAM; ALU o load, that write to a register

2. destination: this is the register or memory address that
will be modified by the instruction

3. value: this field stores the result of the instruction untill
commit

4. ready: if set, it signals that the instruction has completed
execution and that the output value is available.

103

Hardware speculation
• In speculative execution, instructions go through four “macro-

phases”. The first three are equal to those in Tomasulo’s basic
scheme

1. ISSUE:
• an instruction if fetched from Instruction Memory (simplified

assumption)
• it is forwarded to the EXECUTE phase if there are a reservation

station and a ROB entry free. Instructions are inserted into the
ROB in program order. Otherwise, stall.

• operands required by the instructions are forwarded to the RS if
they are available in the registers or in the ROB (why can they
be available in the ROB?)

• the ROB entry number that will receive the result is captured
into the RS: it will be used to tag the result of the instruction,
when it will be placed on the CDB. 104

Hardware speculation

2. EXECUTE:
• If at least one of the operands is unavailable, the CDB is

monitored to detect availability of the data

• when all opernads are available, the instruction is forwarded to
the corresponding Functional Unit

3. WRITE RESULT:
• the result, once ready, is written on the CDB, and, through it, in

the ROB and in any station waiting for it (note, not in the register
file nor in RAM).

105

Hardware speculation
4. COMMIT: (instructions commit is in-order, the ROB is managed

as a circular queue, in which instructions are inserted in the same
order of fetch from IM)

• when an instruction in Rob reaches the head of the queue
(because other instructions have been inserted), commit can start

• If the instruction is NOT a branch, the content of the VALUE
field is tranferred into the register or Ram location. The
instruction is removed from the ROB

• if the instruction is a branch with a WRONG prediction (at
this point, the execution of the branch has been completed, of
course) the whole ROB is flushed and the computation restarts
with the correct instruction.

106

Hardware speculation

• If the branch was CORRECTLY predicted, nothing
special happens: simply, the branch instruction is removed
from the ROB and the head of the queue is updated to the
next-in-line entry.

• In some architectures, as soon as the CPU detects that a
branch prediction is wrong, the branch is immediately
removed from the ROB together with all following
instructions (that have been unduly executed), while the
preceding ones are preserved.

107

Hardware speculation
The basic structure for
Tomasulo’s scheme with
speculation. Note the
ROB and the absence of
store buffers. Let us still
assume that the
“instruction queue” is
actually the Instruction
Memory (Hennessy-
Patterson, Fig. 3.29):

108

Hardware speculation: example
• Let us consider a CPU with FP functional units that execute an

ADD in 2 cycles, a MUL in 10 cycles and a DIV in 40 cycles. The
following code is executed:

LD F6, 34 (R2)
LD F2, 45 (R3)
MUL F0, F2, F4
SUB F8, F6, F2
DIV F10, F0, F6
ADD F6, F8, F2

• Here follows the situation of the RS, RB, and FP registers when
MUL is ready for commit (Hennessy-Patterson, Fig. 3.30):

109

110

name busy Op Vj Vk Qj Dest A
Load1 no
Load2 no
Add1 no
Add2 no
Add3 no
Mult1 no MUL Mem[45+Regs[R3]] Regs[F4] #3
Mult2 yes DIV Mem[34+Regs[R2]] #3 #5

Field F0 F1 F2 ... F5 F6 F7 F8 F10
reorder # 3 ... 6 4 5
busy yes no no ... no yes ... yes yes

entry busy instruction state destination value
1 no LD F6,34(R2) commit F6 Mem[34+Regs[R2]]
2 no LD F2,45(R3) commit F2 Mem[45+Regs[R3]]
3 yes MUL F0,F2,F4 write result F0 #2 x Regs[F4]
4 yes SUB F8,F6,F2 write result F8 #1 - #2
5 yes DIV F10,F0,F6 execute F10
6 yes ADD F6,F8,F2 write result F6 #4 + #2

Hardware speculation - INTEL

111

FU FU FU FU SA SD LA

L1 Dcache

(retirement)
register file

ROB
Reorder Buffer

MOB
Memory Reorder Buffer

Unified reservation stations

Decoded instruction
in program order

CDB

Multiple Issue
• If dynamic ILP, considered so far, is augmented with

multiple issue, namely the capability to start the
execution of more instructions in parallel one comes
close to a complete description of most modern processors.

• Multiple issue requires a “wider” datapath, to carry on
from one pipeline stage to the following one all the
informations associated to all instructions issued in
parallel.

• But this costs little …. if one considers the actual usage of
silicon die

112

Multiple Issue Drivers
• The die area is LARGELY devoted to caches, which

implies that “CPUs” (aca pipeline stages) consume small
areas.

• i7 die (2008), 263 mm² area, 731 millions transistors .113

Multiple Issue Drivers
• Bringing data & instructions from RAM into the die IS

THE COST (in time). So, busses allow for wide data
transfers since dies have large numbers of pads

• Cache lines (LLC that is L3) are usually 32B or even
larger, thus each line possibly accommodates for many
instructions.

• The true penalty has been paid (miss), the silicon for the
CPU is much less demanding than for caches, so

• Multiple pipelines in each core

114

Multiple Issue
a. There must be a sufficient number of functional units to execute in

parallel multiple instructions. As an instance, at least a ALU, a
multply unit for integers and fp, and so on (if these units are
themselves pipelined, all the better !).

b. It must be possible to fetch multiple instructions from Instruction
Memory, and multiple operands from Data Memory, within each
clock cycle (cache memory for instructions and for data usually
have enough “bandwidth” for this purpose)

c. The register file must be multi-ported both for addressing and for
reading/writing registers, to support multiple read/write accesses
within the same clock cycle

115

Multiple Issue
• Any processor with these features is capable of issuing multiple

instructions for execution in the same clock cycle, and it is therefore
referred to as a superscalar architecture. (Hennessy-Patterson,
Fig. A.29)

• A superscalar processor can be thought of as a set of pipelines
working in parallel, each handling the execution of one instruction,
as was the case with the first Pentium.

116

• Strictly speaking, a superscalar
architecture need not support neither
dynamic scheduling nor speculation.

Multiple Issue

• Nethertheless, if no dynamic scheduling is available, the
number of instructions that can be effectively executed in
parallel is strongly reduced:

– an independent instruction C immediately following a couple of
instructions A and B mutually dependent on one another is
stopped any way, because of the stall caused by the couple A B.

• Therefore, it is really hopeless (at least inefficient) trying
to issue multiple instructions in a statically scheduled
pipeline.

117

Multiple Issue
• This is why processors with a statically scheduled pipeline

issue at most two instructions per clock cycle, since
otherwise they could not sustain a higher degree of issue.

• Even so, they must resort to specific techniques for static
ILP, most notably to a strong support from the compiler,
to raise at the most CPI.

• A larger issue parallelism (4 or 5 instructions per clock
cycle) requires either a dynamically scheduled pipeline, or
a VLIW processor (next chapter)

118

Multiple Issue

• Let us examine the basic operation of a superscalar processor.

• It fetches from IM (that is, from first level instruction cache)
from 0 to N instructions each cock cycle (bundle), being N the
largest number of instructions that IM can provide in parallel.

• Instructions are forwarded (in bundles) to an Instruction Queue (IQ)
so that the CU (“dispatch Control Unit”) can analyze them and
check for possible hazards and dependencies.

• This Instruction Queue is depicted in figures Henessy-Patterson 3.2
and 3.29. According to the type of processor, the IQ has a capacity
of some tenths of entries (the actual value depends on processor
model, with newer processor having larger and larger queues)

119

Multiple Issue
• The CU control logic checks for potential structural and data

hazards among the instructions in a bundle and issues (that is,
forwards to the reservation stations) some instructions, making
room for more instruction in the queue.

• At the next clock cycle, another group (possibly the largest) of
instructions is fetched from IM, and one more bundle is assembled.

• The number of instructions that the CPU can actually issue for
execution is likely smaller to the number that can be fetched from
IM.

• In the long run, the IQ gets filled up; if in a given clock cycle M
instructions are issued for execution, a maximum of M ≤ N can be
fetched from a bundle at the next clock cycle.

120

Multiple Issue
• In the worst case, if IQ is filled up, and in the preceding clock cycle

no instruction has been sent to the EXECUTE phase because of
hazards, no further instruction can be fetched from IM.

• Should this happen even if there is room in IQ, since the processor
might fetch a number of instructions smaller to the free entries in
IQ?

• Also keep in mind that, in the long run, the CPU must check for
dependences and hazards among some tenths of instructions, which
requires thousands of cross checks (in one or two clock cycles!)

• If the processor supports speculation (the most common case
indeed), the CPU must also be able to carry out the commit of
multiple instructions in the same clock cycle, otherwise the ROB
quickly becomes the system bottleneck.

121

Multiple Issue

122

Instructions
fetched

Nf

Instr.
decoded &

issued

Ni

Retired
(committed)

instr.

Nr

Dynamic
speculative
execution

Multiple Issue: example
Loop: LD F0, 0 (R1)

FADD F4, F0, F2
SD F4, 0 (R1)
ADD R1, R1, -8
BNE R1, R2, Loop; //branches if R1 <> R2

• Let us use Tomasulo’s scheme in a dynamically schedule
superscalar version of MIPS featuring one ALU and one F.P. unit,
capable of issuing two instructions per clock cycle, with
no speculation. Let us assume that the BNE branch is correctly
predicted thanks to a branch target buffer.

• In the following chart is depicted the situation of the first three
iterations, scheduled dynamically. (I = Issue, X = Execute,
M=Memory access, W=Write results to CDB) 123

Multiple Issue: example
• Further assumptions:

• Phase X (execute) in FADD requires 3 clock cycles.

• Optimal branch prediction, but instructions after the branch
cannot proceed to X until the branch condition is evaluated
(there is no speculation).

• The computed value is written onto the CDB at the end of the
clock cycle in which it is produced, and thus it is available to
the various reservation stations waiting for it only at the end
of the subsequent clock cycle

• The ALU is used both for integer operations and for load and
store address computation.

124

Multiple Issue: example

125

clck LD FADD ST ADD BNE LD FADD ST ADD BNE LD FADD ST ADD BNE

1 I I

2 X I I

3 M X I

4 W X I I

5 X W I I

6 X X I

7 X X I I

8 W M X I I

9 M W X I

10 X W

11 X X

12 X X

13 W M X

14 M W X

15 X W

16 X X

17 X

18 W

19 M

Multiple Issue: example
• 15 instructions (three iterations) are carried out in 19 clock cycles,

with a CPI of 19/15 = 1,27

• Can this performance be improved?

• Note that the ALU, used both for integer operations and for
addresses computation, becomes a bottleneck.

– With two separate ALUS, the instructions would complete in 12 clock cycles,
instead of 19.

• Furthermore, the FP unit is under-used (a single FP operation per
clock cycle), and 2 of the 5 instructions are only for loop
management and are repeated in each iteration (ADD and BNE)

– It is possible to apply static loop unrolling, to increase the number of FP
operations and to decrease loop management overhead (a feature to be
discussed in the next chapter)

126

Why is dynamic ILP so good ?
• Processors with dynamic ILP try to minimize structural, data and

control hazards at run time, and must carry out a very complex set
of actions in a few clock cycles

• What about moving all work required to exploit parallelism
embedded in instructions over to the compiler, that has much more
time to analyze and solve (when possible) the various hazards in a
program?

• The main reasons are three

1. Cache miss cannot be foreseen statically, and dynamic ILP can
partially hide them by executing other instructions, while the
instruction that caused the miss is waiting for the missing data to be
fetched from RAM into the cache.

127

Why is dynamic ILP so good?
2. Branches cannot be statically predicted with proper accuracy

and dynamic BP and speculation increase the probability to carry
out useful work well in advance with respect to the moment when
the outcome of the branch instruction is known.

3. Static ILP works well only on a specific architecture, as will be
discussed in detail in the next chapter. With dynamic ILP programs
can be distributed and get executed on different architectures
(provided they support the ISA) having a different number of F.U.,
registers for renaming, pipeline stages, type of branch prediction (as
an instance, many Pentium, Core duo, AMD and the like)

• Dynamic ILP works, but is it really good?

128

Theoretical limits of dynamic ILP

• We have discussed many complex techniques to exploit at run-time
the parallelism embedded in a program instructions.

• But, set aside the practical limitations (due to effective availability
of hardware resources), how much room is there for parallelism?

• The only limitations than cannot be overcome are those due to real
data dependences:

LD F0, 0 (R1)

ADD F4, F0, F2

• all other limitations can be overcome with enough hardware and
enough info about them

129

Theoretical limits of dynamic ILP

• Let us do the following assumption on a theoretical CPU:
– register renaming: the CPU has an infinite number of registers

for renaming. So all WAW and WAR are eliminated and an
arbitrary number of instructions can be executed concurrently

– Branch prediction: optimal

– Memory-address alias analysis: all RAM addresses are known,
so that RAM based name dependences can always be avoided.
For example, it is known if #57 (R5) = #10 (R1)

– Multiple issue: unlimited

– Cache memory: no miss

130

Theoretical limits of dynamic ILP

• note that FP programs usually have more parallelism to be
exploited at the loop level 131

• Here are the results for a few benchmarks. (Hennessy-
Patterson, Fig. 3.35)

Theoretical limits of dynamic ILP

132

• So, what if one limits the number of consecutive
instructions that can be examined for dependences
analysis? (still maintaining optimal branch prediction)

• The amount of work to be done (quickly ! in one or two
clock cycles) can be enormous. Some estimations:

• 2000 instructions: 4 millions of comparisons

• 50 instructions: 2500 comparisons

• The last figure is the average number of comparisons
affordable in a modern CPU (in one or two clock cycles!)

Theoretical limits of dynamic ILP

133

Here is the decrease in
ILP actually available
(Hennessy -Patterson,
Fig 3.37):

Theoretical limits of dynamic ILP

134

Let us now add a
limitation on branch
prediction, by using
different actual
modes (Hennessy-
Patterson, Fig. 3.39)

Theoretical limits of dynamic ILP

135

• Clearly, by introducing just a few real limitations, actually
available ILP diminishes quickly.

• If one takes into account other factors, such as a limited
number of registers for renaming, non-perfect RAM
references analysis, cache miss, and so on, true ILP is
further limited.

Some science(fiction)

136

• Clearly, it is possible to extract more and more ILP by
increasing the number of avalialble resources (cache,
registers, circuitry for dependencs analysis). Is there
anything else?

• Some research issue hint to some form of value
prediction (VP).

• VP consists of trying to predict vales produced by
instructions, and effective addresses used in LOAD and
STORE

Some science(fiction)

137

• If the result of one operation can be predicted, it can also
be forwarded to dependent instructions that wait for it as
their operand.

• This is a form of instruction speculation, not branch
speculation, and it would allow for the concurrent
execution of mutually dependent instructions.

• Thus is useful only if the prediction has good chances of
being correct, which can indeed happen in some
situations.

• What would be the benefit of a perfect prediction
capability?

Some science(fiction)

138

• Another form of prediction can be tried on LOAD and
STORE addresses, allowing to re-order such memory
operations without incurring in WAW or WAR hazards.

• Finally, some studies hint to a possible branch speculation
involving multiple branches, possibly nested, up to a
number of 8 consecutive branches...

