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Instruction Level Parallelism (ILP):
Introduction

• Pipeling partially overlaps instructions execution, thus 
leveraging on the potential parallelism embedded in the 
instructions.

• This type of parallelism is named “Instruction Level 
Parallelism” (usually ILP).

• Static ILP places on the compiler the task of finding 
instructions that can be “overlapped” (a POE that gives a 
good ROE)

• Dynamic ILP places on the hardware all of the effort
to extract parallelism from any POE 2



Instruction Level Parallelism (ILP)
• The actual amount of parallelism embedded in the 

instructions of a  program that can be exploited depends 
on the pipelining issues examined before. Three are three 
types of conflicts: 

• structural: limited number of available functional units

• data: an instruction has to wait for the outcome of another 
one, and the two instructions cannot proceed in parallel

• control: as long as the outcome of a branch is unknown, 
so is the next instruction to be executed

3



Instruction Level Parallelism (ILP)
• In literature, these conflicts are called “hazard” and they 

are responsible for pipeline stalls.
• Let us ignore these conflicts, and let us focus on the two 

basic ways to increase the level of parallelism embedded 
in instructions that can be exploited:

1. Increasing the number of phases in the pipeline
(the so called pipeline depth)

• This increases the number of instruction whose execution 
can be potentially overlapped, and so the level of  
parallelism (potentially, since hazards are still there…) 
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Instruction Level Parallelism (ILP)

• For a fixed amount of work necessary to carry out an 
instruction, splitting the work in more phases (each 
performed by a pipeline stage) makes each phase shorter, 
so requiring a shorter clock cycle. Otherwise stated:
the CPU clock frequency can be raised. 

• Equivalently: for a given multicycle pipelined 
architecture, to increase instruction execution speed, it is 
possible to raise clock frequency.
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Instruction Level Parallelism (ILP)

• Higher frequencies imply shorter clock cycles, which 
allow for less work; thus the architecture must be re-
designed by breaking down work into a larger number of 
phases, each performing less activity …

• This technique has been heavily exploited recently, most 
notably in Pentium IV, that sported a peak frequency of 4 
GHz with an almost 30-stage pipeline.
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Instruction Level Parallelism (ILP)
• Intel CPUs evolution (Tanenbaum, Fig. 1.11):
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Instruction Level Parallelism (ILP)
• Of course, this trend cannot continue indefinitely:

– because of architectural problems: the more complex the 
pipeline, the more complex its control unit;

– because of technological limitations: width of paths that 
interconnect transistors, paths interference, energy consumption 
and heat dissipation.

• The deeper the pipeline depth, the longer the time to 
complete a single instruction, the larger the number of 
instructions carried out in parallel (potentially…)

8



Instruction Level Parallelism (ILP)
• Instead of increasing pipeline depth (actually, when this 

option is no longer feasible), it is possible to replicate 
some of the processor functional units:

2. issuing the execution of multiple instructions in 
parallel, a technique commonly referred to as  “multiple 
issue”.

• Multiple issue requires a “larger” datapath, capable of 
transferring from one pipeline stage to the following all 
informations associated to the instructions issued in 
parallel.

• And also more sophisticated functional units:
9



Instruction Level Parallelism (ILP)
a. There must be a number of funtional units for the parallel execution  

of instructions. As an example, ALU, integer/floating point 
multiplication, and so on.

b. It must be possible to fetch within each clock cycle more 
instructions from Instruction Memory, and multiple operands from 
Data Memory (cache memories, that store instructions and data, 
usually have a “bandwidth” taylored to this goal)

c. It must be possible to address in parallel multiple registers, and 
reading/writing the registers used by the different instructions in 
execution, in the same clock cycle.
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Instruction Level Parallelism (ILP)
• In a simple pipelined architecture, with no dependences, 

the execution of a new instruction is completed at each 
new clock cycle: 
Clock Per Instruction (CPI) = 1

• In multiple issue pipelined architecture, it is potentially 
possible to complete the execution of more instructions 
per clock cycle, thus CPI < 1 (hazards make things a bit 
difficult, in reality…)

• Multiple issue architectures are usually refereed to as 
“superscalar”, even though this name should be reserved 
to “dynamic” multiple issue architectures (to be discussed 
shortly…) 11



Instruction Level Parallelism (ILP)

• The basic scheme of a 
superscalar architecture. 
Actually, pipeline stages are 
more than 5, but instruction 
execution can be split into 5 
main phases (Hennessy-
Patterson, fig. A.29)
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Instruction Level Parallelism (ILP)
• Modern high level processors combine pipelining with 

multiple issue, and can issue 3 to 8 instructions per clock 
cycle.

• As an instance, a 3 GHz processor capable of issuing up to 
4 instructions per clock cycle would sport a peak 
execution speed of 12 billion instructions per second, and 
a CPI equal to 0,25.

• Actually, pipeline stalls limit heavily these performances, 
and even guaranteeing CPI = 1 is often very difficult…
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Instruction Level Parallelism (ILP)
• To implement multiple issues, two basic problems must 

be tackled: 
a. Estabilishing which and how many instructions can be 

sent to execution in a given clock cycle. Usually, the 
selected instructions are assembled in an issue packet, 
and issued in the same issue slot.

b. Solving possible structural hazards, both on data and on 
control.

• Multiple issue processors can be split into two large 
categories, according to how (and when) these two 
problems are solved.
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Instruction Level Parallelism (ILP)
• In static multiple issue processors (to be discussed in the 

next chaporter), it is the compiler (software…) that 
chooses the instructions to be issued in parallel (which 
informations are required by the compiler?)

• When the processor fetches from IM an “instruction 
packet”, it knows already that they can be executed in 
parallel without conflicts from hazards among the 
instructions.

• The number of instructions in a packet is set a-priori 
during processor design, so these are static issue 
architectures.

• When most activity to extract parallelism among 
instructions is carried out by the compiler, one speaks of  
Static Instruction Level Parallelism 15



Instruction Level Parallelism (ILP)
• In dynamic multiple issue processors (discussed in this 

chapter) it is the processor that  estabilished “at run time”
which instructions to issue, and how to solve conflicts 
from hazards.

• The processor decides on the spot even the number of 
instructions to issue (with a maximum depending on the 
specific architecture): these are dynamic issue 
architectures and the scheme is called dynamic 
Instruction Level Parallelism

• The two approaches are not completely distinct, in real 
cases, and often features from each of them are actually 
exploited toghether. 16



Instruction Level Parallelism (ILP)
• Almost all “general purpose” processors (both old ones, such as 

Pentium, PowerPC, SPARC, MIPS, and more recent multi-core 
ones) basically adopt dynamic ILP.

• In dynamic ILP, instructions are fetched in the order produced by 
the compiler, but many architectures implement some form of 
pipeline dynamic scheduling: the issue order (that is, the order by 
which instructions are forwarded to the EX phase in the pipeline) 
can be changed, to minimize the effects of dependences.

• Warning: to fully understand this mechanism, we shall cover first 
the single issue case (one instruction per clock cycle), and we will 
revert to multiple issue later.
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Instruction Level Parallelism (ILP)
• Let us consider this code fragment, supposing that the value 

addressed by 100(R2) is not in the cache memory:

LD F0, 100(R2)
FADD F10, F0, F8
SUB R12, R8, R1 // what if it were: “FSUB F12, F8, F1” ?

• The execution of FADD depends on LD, but in a standard pipeline 
(usually referred to as statically scheduled pipeline) instructions 
flow one after another in the pipeline: until FADD can be forwared
to the EX phase, it blocks the execution of DSUB, which could be 
executed, since it has no dependences from preceding instructions.
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Instruction Level Parallelism (ILP)
• Instead, processors with a dynamically scheduled 

pipeline are capable of detecting that DSUB does not 
depend on preceding instructions, and can forward it to 
the esecution to an integer unit, while FADD is still 
waiting for the value in F0.

• Instructions can overrun each other within the  pipeline
and this implies not only an out-of-order execution, but 
also their out-of-order completion.

• Otherwise stated, instructions can execute the MEM and 
WB phases in an order different from that by which they 
are ordered in the program.
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Instruction Level Parallelism (ILP)

• In a system working with static ILP, the compiler could 
detect such a potential stall, and could generate code in 
which the DSUB is moved before the LD.

• With static ILP, the compiler carries out this and more 
complex code movements, to produce a more efficient 
execution.

• Obvioulsy, all these transformations must preserve the 
global behavior of the program (program semantics)
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Instruction Level Parallelism (ILP)
• In dynamic ILP, some form of dynamic branch 

prediction is customary: for each executed branch 
instruction, the CPU hardware records the outcomes of 
preceding executions (that is, whether that branch was 
taken or not).

• When the same branch is executed, past history of that 
branch is used to predict if the brach will be taken, and so 
choosing the next instruction to execute.

• Obviously, this techniques works only for branches that 
do have an history, namely, those that are executed more 
than once

21



Instruction Level Parallelism (ILP)
• A natural extension of branch prediction is hardware 

speculation. Let us consider this situation:

FMUL F4, F0, F2 // may need 10 clock cycles
BLE F4, #0.66666, next // branch if less or equal
FADD F1, F1, #0.5
ADD R1, R1, #2
FADD F2, F2, #0.25
ADD R2, R2, #1

next:

22



Instruction Level Parallelism (ILP)
• The instructions controlled by the branch can be (possibly) executed 

only when the outcome of BLE is known, which in turn depends on 
the result of FMUL.

• The processor can speculate on the outcome of the branch, on the 
basis of some form of branch prediction, and if the prediction is for 
a not-taken branch, it could issue the instructions within the 
highlighted block.

• Of course, the prediction can be wrong, and the processor must be 
capable of undoing the effects of the executed instructions, which 
should not have been issued.

• Speculation requires a very sophisticated hardware, and it is seldom 
applied in processors supporting dynamic ILP.
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Dependences and hazards
• Let us start discussing dynamic ILP by better formalizing 

the notion of dependence among instructions, which is the 
primary effect in limiting the exploitation of the parallelism 
embedded in the instructions of a program.

• This discussion will be useful even when we will cover 
static ILP, where it is the compiler that has the task of 
understanding which instructions can be executed in 
parallel, being independent of one another, and which 
cannot.

• In dynamic ILP instead, it is the processor that must 
discover possible dependences among instructions, right at 
the issue moment, and must be capable of handling them. 

24



Dependences and hazards

• Dependences are a feature of programs (algorithms) and 
have no relationship whatsoever with hardware.

• Hazards are a feature of hardware, specifically of any 
microarchitecture for a given ISA.

• A certain set of dependences can give rise to hazards on a 
given microarchitecture and to NO hazards on a different
microarchitecture.

25



Dependences and hazards
• Establishing how an instruction depends on another is 

instrumental to assessing the amount of parallelism in a 
program, and how it can be exploited.

• If two instructions are independent, they can be executed 
in parallel and/or in any order in the pipeline, if there are 
enough resources (that is: enough functional units)

• If two instructions are dependent, they must be executed 
in order, and can be executed in overlapped way only to a 
certain degree.

• So, to exploit ILP, it is mandatory to establish instructions
dependences.

26



Dependences
• Let us examine dependences that can exist in a group of 

consecutive instructions that do not contain branches,in
the following “linear segment”.

• Alternatively, we might assume that the CPU always 
knows if the branch will be taken (using some form of 
prediction) that is to say, we disregard control 
dependences, so far.

• There are two types of dependences:

1. data dependences

2. name dependences
27



Data dependences

• Instruction j is (truly) data dependent on instruction i if 
at least one of the following conditions holds:

1. i produces a value that can be used by j

2. j is data dependent on k, and k is data dependent on i

• Condition 2 simply states that there can be an arbitrary 
long chain of dependences.

• i is the producer, j is the consumer

28



Data dependences

LOOP: LD F0, 0 (R1) 
FADD F4, F0, F2
SD F4, 0 (R1)
ADD R4, R4, #-8
BNE R4, R5, LOOP

• The second instruction is data dependent on the first, so is 
the third on the second, and the fifth on the fourth.

• The arrows show the order of execution of instructions, 
which can cause stalls in the pipeline.
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Name dependences
• A name dependence exists when two instructions use the 

same register or memory location, but there is no 
transmission of data between instructions using the same 
name (instructions are not data dependent)

• If instruction I precedes instruction j, there is:
1. an antidependence between i and j if j writes in a register (or 

memory location) read by i. The initial order must be maintained 
for i to read the correct value;

2. a output dependence if i and j write in the same register (or 
memory location). The order must be preserved for the final 
value to be that written by instruction j. 

30



Name dependences
• Here are some examples for antidependence and output 

dependence:
FDIV F0, F2, F4
FADD F6, F0, F8
FSUB F8, F10, F14
FMUL F6, F10, F12

• Antidependence between FADD (waiting for FDIV) that 
reads F8, and FSUB that wants to write F8. What happens 
if FSUB modifies F8 before FADD has used it for the 
sum?

• Output dependence between FADD and FMUL: what 
happens if FADD (because of FDIV) completes after 
FMUL?

31



Eliminating name dependences
• A name dependence is not a true data dependence, since 

there are no values transmitted through instructions (this is 
why we say true data dependence).

• Instructions involved in a name dependence can be 
executed concurrently if the register name (or the memory 
address) is changed, to avoid conflicts (this is much easier 
with registers, an advantage of RISC instructions).

• Renaming can be done statically by the compiler, or 
dynamically by the hardware.
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Eliminating name dependences
• Here is an example on the previous code fragment, to remove 

antidependences and output dependences with proper register 
renaming:

FDIV F0, F2, F4 FDIV F0, F2, F4
FADD F6, F0, F8 FADD F6, F0, F8
FSUB F8, F10, F14 FSUB F9, F10, F14
FMUL F6, F10, F12 FMUL F11, F10, F12

• Obviously, for renaming to be possible, both F11 and F9 must be 
available and free. These changes must be accounted for in 
instructions following those just modified.

• What about resorting to some invisible (at the ISA level) CPU 
register ?
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Dependences and hazards 
• The different problems caused by data and name 

dependences can be categorized as follows. Let i and j be 
two instructions, where i occurs before j. There can be 
three types of data hazards:

1. RAW (Read After Write): j tries to read a register (but even a 
memory location) before i writes it. j reads in errors the old, stale 
value. 

– It is due to a true data dependence, and it is by large the most 
common. Instructions order has to be preserved so that j receives 
the correct value from i.

– Example: LD R2, #100(R3) followed by ADD R5,R4,R2. The 
pipeline structure can produce a RAW hazard.
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Dependences and hazards
• Basically, with a RAW instruction j cannot procede its 

execution because the data it requires are not yet 
available.

• The processor must detect the dependence of j from a 
previous instruction and withhold execution until the 
missing data is available.

• Forwarding can solve some RAW hazards:
ADD R1, R2, R3

SUB R4, R1, R5
AND R6, R1, R7

• but some remain: 35



Dependences and hazards
• especially when “long lasting” instructions are involved”:

LD R1, 0(R2)

SUB R4, R1, R5
AND R6, R1, R7

• In a processor with a statically scheduled pipeline, it is 
necessary to suspend SUB (and so AND too) for a clock 
cycle, waiting for the data from LD to be available 
(assuming the data are in the cache, otherwise…)

• This effect can be obtained by repeating the ID phase of 
SUB (it is decoded again, and the registers are read again) 
and the IF phase of AND (fetched again from IM) 36

The data item addressed by LD will be 
present in MEM/WB register only at the 
endo of clock cycle 4, but SUB requires
it at the beginnign of that cycle.



Dependences and hazards
2. WAW (Write After Write): j tries to write a register before it is 

written by i. The double write terminates in the wrong order, 
leaving in the register the value produced by i instead of that 
produced by j. 

– It is due to and output dependence, and only happens in pipelines 
where an instruction can proceed even if a previous one is stalled.

– Example: in a pipeline with a multi-stage floating point unit, a 
simple case of WAW hazard: 

FDIV F0, F2, F4
FADD F6, F0, F8 stalled by FDIV because of RAW on F0
FSUB F8, F10, F14 proceeds (is this possible ?)
FMUL F6, F10, F12 

How can this case be solved?
37



Dependences and hazards
2. WAW (Write After Write).

– Another example: in a pipeline with a multi-stage floating point 
unit, a simple case of WAW hazard: 

FMUL F4, F5, F6 
LD F5, #0 (R7)
FADD F4, F7, F10
SD F5, #0 (R8)

– What is the meaning of this piece of code ?
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Dependences and hazards
2. WAW (Write After Write):

Example: in a pipeline with a multi-stage floating point unit, a 
simple case of WAW (is this a hazard ?): 
LD F4, #0 (R7) a long lasting instruction
SD F7, #0 (R8)
FMUL F4, F5, F6 
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Dependences and hazards

3. WAR (Write After Read): j tries to write a register before it is 
read by i. i reads in error the new value. 

(i) FADD F6, F0, F8 FADD F6, F0, F8
(j) FSUB  F8, F10, F14 FSUB F9, F10, F14

– It is due to an antidependence, and it seldom ensues, since in 
most pipelines, operands are read (stage ID) “long” before being 
written (stage WB).

– WAR hazards can arise if instructions can write results in some 
early stage of the pipeline and can read operands in final stages. 
WAR hazards are also possible in instructions are re-ordered (try 
to build a case for a WAR hazard).

• What about RAR hazards?
40



Data and name hazards reduction 
through dynamic scheduling

• Pipeline dynamic scheduling is the set of CPU run-time 
hardware techniques that help reduce the frequency and 
the length of pipeline stalls, including possibly a change 
in the order of instructions, so as to minimize RAW 
hazards effects.

• Pipeline dynamic scheduling includes register renaming 
(at instructions execution time) to reduce effects by WAW 
and WAR hazards.

41



Dynamic scheduling: 
Tomasulo’s approach

• The basic technique for dynamic scheduling was 
developed already in 1967 for IBM360/91 by Robert 
Tomasulo, a researcher with IBM

– To minimize RAW hazards, it tracks availability of operands, 
independently of the execution order of instructions.

– To minimize WAW and WAR hazards, it uses a set of internal 
registers (invisible to the ISA level ) to carry out register 
renaming.

• Variations on the original techniques are currently used in 
all CPUs that implement dynamic ILP.
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Pipeline dynamic scheduling 
• The basic feature of Tomasulo’s scheme are reservation 

stations associated to functional units, where instructions, 
fetched from IM and decoded, wait until ready to be 
executed (Patterson-Hennessy, fig. 6.49 modified).

43
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Pipeline dynamic scheduling 

The basic structure of 
the MIPS F.P. unit 
that implements 
dynamic ILP
according to 
Tomasulo’s scheme. 
Disregard the 
“Instruction queue”
and think as it were 
the Instruction 
Memory (Hennessy-
Patterson, Fig. 3.2)
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Pipeline dynamic scheduling 
• Each reservation station can hold one or more instructions waiting 

to use the corresponding funtional unit and, for each instruction:

– the operands that will be used by that instruction or
– the names of the reservation stations that will produce those 

operands.
• a Common Data Bus (CDB) connects all functional units, registers 

and reservation stations, and allows to transmit the result produced 
by a functional unit to all units that need it, in parallel

• In Tomasulo’s scheme, the execution of an instruction can be split 
into three “macro-steps” (each can correspond to more pipeline 
stages):
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Pipeline dynamic scheduling 

• ISSUE. An instruction is fetched from instruction memory and is 
decoded (phases IF and ID in the simple pipeline). If a proper 
reservation station is available, the instruction is forwarded to it.

• If there are no reservation station, the pipeline stalls.

• If the instruction operands are available in the register file, or in 
some reservation station, they are fetched and forwarded to the 
reservation station where the instruction has been moved: the 
instruction is ready for execution in the corresponding functional 
unit.

• For each missing operand, the reservation station receives the name 
of the F.U. that will produce that operand.
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Pipeline dynamic scheduling 

• Note that knowing that the instruction operands:
– can be in another reservation station, or

– still have to be produced by an instruction currently in another 
reservation station

• implies that the CPU control logic, during the ISSUE 
phase, has checked previously issued instructions, already 
forwarded to some reservation station, for dependences 
with current one.
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Pipeline dynamic scheduling 
• EXECUTE: (EX in the basic scheme) the instruction is in a 

reservation station. If one or more operands are not yet available, 
the CDB is checked for them.

• When an operand is available (it is the outcome of another 
instruction, and it is transmitted to the register file through the 
CDB) it is “captured” and it is forwarded to the reservation station 
station waiting for it.

• When all operands are available, the instruction can be sent for 
execution in the corresponding F.U.

• If more instructions are ready for execution in the same F.U., a 
FIFO policy is used to choose the one to execute.
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Pipeline dynamic scheduling 
• In LOAD and STORE instructions, execution is plit in two steps:

• in the first step, the effective memory address is computed, when 
the base register is available, and the computed address is stored in 
a load or store buffer

• LOAD instructions can complete (second step) as soon as the (data) 
memory access unit is available.

• STORE instructions can possibly wait for the data to be stored in 
RAM.

• To prevent hazards while accessing RAM locations, the execution 
order of LOAD and STORE instructions obeys some additional 
constraints, that will be discussed later through an example (what 
makes these hazards so difficult to manage?)
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Pipeline dynamic scheduling 
• WRITE RESULT: (MEM and WB in the basic scheme) when the 

instruction executed in the F.U. has produced its result, it is written 
on the CDB, and it is thus forwarded to the register file, to the 
reservation stations and to the load/store buffers waiting for it.

• STORE instructions write data to the data memory in this phase, 
when both the address and the data for that address are ready.

• Analogously, LOAD instructions fetch data from RAM and write it 
into the destination register.
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Pipeline dynamic scheduling 
• The reservation stations, the register file, load and store buffers 

have internal registers (unavailable to the ISA level) used for 
storing the infos required to handle the whole procedure

• When an instruction I is in a station, it refers to an operand it is 
waiting for by writing in an internal register of that station the 
number of the station S holding the instruction that will produce the 
result required by I.

• When S produces a result to be written (for example) in R5, the 
value is transmitted through the CDB to R5 and to all reservations 
stations where I is waiting that result.
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Pipeline dynamic scheduling 
• At this point, if another instruction wants to overwrite R5, it can do 

so with no harm for I, that has already a local copy of R5 saved in 
its reservation station.

• Otherwise stated, the reservation station internal registers act as 
temporary registers, and are used to implement register renaming.

• Moreover, an instruction can be executed as soon as its operands are 
available, possibly before other instructions that preceded it in the 
IM: the pipeline is scheduled dynamically.

• Obviously, if two independent instructions require the same F.U., 
they cannot be executed in parallel (if the F.U. is itself a pipeline, 
they can proceed in pipeline fashion)

52



Pipeline dynamic scheduling 
• Let us know examine some cases with Tomasulo’s scheme, 

assuming that each reservation station can hold a single instruction. 
Each station has seven fields:

– Op: the operation to be executed on certain operands

– Qj, Qk: the stations that will produce the result required by Op. 
A value zero means that the operand is already in Vj or Vk

– Vj, Vk: operands values (for a LOAD or a STORE, Vj contains 
the offset)

– A: contains initially the immediate value for the LOAD or 
STORE, and the effective address, once computed

– Busy: The station and its corresponding F.U. are occupied
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Pipeline dynamic scheduling 
• Each register in the register file has a field:

– Qi: the number of the station containing the instruction whose 
result is bound for the register.

– If Qi is empty or has a value 0, there is no instruction that is 
computing a value for that register.

• LOAD and STORE buffers each have a field, A, 
containing the effective address on which the operation 
will work.
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Dynamic scheduling : example 1
LD F6, 34 (R2)
LD F2, 45 (R3)
MUL F0, F2, F4
SUB F8, F2, F6
DIV F10, F0, F6
ADD F6, F18, F12

55

WAR hazard on ADD: it writes F6, 
that is just used by DIV. If ADD 
completes before DIV reads F6, a 
wrong value is used. (Hennessy-
Patterson, Fig. 3.3)



Dynamic scheduling : example 1
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.3)

56

tag busy Oi. Vj Vk Qj Qk A

Field F0 F2 F4 F6 F8 F10 F12 ... F31

Qi



Dynamic scheduling : example 1
LD F6, 34 (R2)
LD F2, 45 (R3)
MUL F0, F2, F4
SUB F8, F2, F6
DIV F10, F0, F6
ADD F6, F18, F12

57

Instruction Issue Execute Write Res.
LD F6, 34 (R2) Ö Ö Ö

LD F2, 45 (R3) Ö Ö

MUL F0, F2, F4 Ö

SUB F8, F2, F6 Ö

DIV F10, F0, F6 Ö

ADD F6, F8, F2 Ö

WAR hazard on ADD: it writes F6, 
that is just used by DIV. If ADD 
completes before DIV reads F6, a 
wrong value is used. (Hennessy-
Patterson, Fig. 3.3)



Dynamic scheduling : example 1
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.3)

58

tag busy Oi. Vj Vk Qj Qk A

load1 yes load 34+[R2]

load2 yes load 45+[R3]

float1 yes MUL [F4] load2

fadd1 yes SUB mem[34+[R2]] load2

fdiv1 yes FDIV mem[34+[R2]] float1

fadd2 yes add [F18] [F12]

Field F0 F2 F4 F6 F8 F10 F12 ... F31

Qi float1 load2 fadd2 fadd1



Dynamic scheduling : example 1
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.3)

59

tag busy Oi. Vj Vk Qj Qk A

load1 yes load 34+[R2]

load2 yes load 45+[R3]

float1 yes MUL [F4] load2

fadd1 yes SUB mem[34+[R2]] load2

fdiv1 yes FDIV mem[34+[R2]] float1

fadd2 yes add [F18] [F12]

Field F0 F2 F4 F6 F8 F10 F12 ... F31

Qi float1 load2 fadd2 fadd1



Dynamic scheduling : example 1
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.3)

60

name busy Oi. Vj Vk Qj Qk A

Load1 no

Load2 yes Load 45+Regs[R3]

Add1 yes SUB Mem[34+Regs[R2]] Load2

Add2 yes ADD Add1 Load2

Add3 no

Mult1 yes MUL Regs[F4] Load2

Mult2 yes DIV Mem[34+Regs[R2]] Mult1

Field F0 F2 F4 F6 F8 F10 F12 ... F31

Qi Mult1 Load2 Add2 Add1 Mult2



Dynamic scheduling : example 1
• please note: 

– Regs[ ] shows register file access

– Mem[ ] data memory

– the second Load has completed the computation of the effective 
address and it is waiting to access the data memory unit

– the SUB has an operand already available (Vk) and waits for the 
second from the outcome of the second LOAD (Qj)

– ADD waits for its opernads from SUB (Qj) and from the 
second LOAD (Qk): as soon as available, the ADD can start 
execution

– the WAR hazard is solved with register renaming: DIV does 
not get its second operand from F6, but from Vk. 
Completion of ADD before DIV causes no harm. 61



Pipeline dynamic scheduling
• Tomasulo’s scheme has two basic characteristics (that, by the way, 

make it superior with respect to other simpler schemes, such as 
scoreboarding, an obsolete dynamic scheduling):

1. operand access is distributed

– This is obtained by using multiple reservation stations and the 
CDB. When more instructions are waiting for the same operand 
A (the other one being already available), as soon as A is ready 
all instructions can be launched (provided they use different F.U., 
or these are pipelined).

– If the operands should be fetched from the register file, each F.U. 
should access sequentially the register holding the operand.

62



Pipeline dynamic scheduling
2. WAW and WAR are eliminated 

– This is obtained by register renaming on reservation station 
internal registers, and by forwarding operands just produced to 
all stations awaiting for them, as soon as possible and in parallel.

– Let us consider the WAR example just discussed. If the first 
LOAD had not yet completed, Qk for DIV would contain Load1, 
and DIV would be independent of ADD.

– ADD can execute without waiting for DIV to read its operands 
(specifically the second one)
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Dynamic scheduling: example 1a

• With the same code as the previous example, let us 
consider the situation when MUL instruction is ready to 
produce its result (Hennessy-Patterson, Fig. 3.4):
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Instruction Issue Execute Write Res.
LD F6, 34 (R2) Ö Ö Ö

LD F2, 45, (R3) Ö Ö Ö

MUL F0, F2, F4 Ö Ö

SUB F8, F2, F6 Ö Ö Ö

DIV F10, F0, F6 Ö

ADD F6, F8, F2 Ö Ö Ö



Dynamic scheduling: example 1a
Reservation stations / Register Status (Hennessy-Patterson, Fig. 3.4)
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nome busy Op Vj Vk Qj Qk A

Load1 no

Load2 no

Add1 no

Add2 no

Add3 no

Mult1 yes MU
L

Mem[45+Regs[R3]] Regs[F4]

Mult2 yes DIV Mem[34+Regs[R2]] Mult1

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Mult1 Mult2



Pipeline dynamic scheduling
• The real effectiveness of Tomasulo’s scheme in handling name and 

data hazards shows best in loop management.

• In the following code fragment, let us assume that the CPU assumes 
that the branch will be taken (with static branch prediction: 
backwards branches are taken, or another dynamic branch 
prediction technique to be covered later). 

Loop: LD F0, 0 (R1) (Hennessy-Patterson, Fig. 3.6)
MUL F4, F0, F2 // multiplies by a scalar in F2  
SD F4, 0 (R1) // the elements of an array
ADD R1, R1, -8
BNE R1, R2, Loop; //branches if R1 <> R2
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Pipeline dynamic scheduling

• If the CPU is able to fetch a new instruction from IM at every clock 
cycle, reservation stations allow to sustain the concurrent execution 
of instructions from different (consecutive) iterations, and the 
stations themselves act as additional registers.

• In the code fragment just considered, let us assume that all 
instructions from two consecutive iterations have already gone 
through the ISSUE phase, but none has completed.

• Also, let us not consider the ADD operation, that only handles loop 
management, and let us assume that the branch is taken
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Dynamic scheduling: example 2
Loop: LD F0, 0 (R1) (Hennessy-Patterson, Fig. 3.6)

MUL F4, F0, F2 // / multiplies by a scalar in F2 
SD F4, 0 (R1) // the elemts of an array
ADD R1, R1, -8
BNE R1, R2, Loop; //  branch if R1 <> R2
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Instruction Iteration Issue Execute Write Res.
LD F0, 0 (R1) 1 Ö Ö

MUL F4, F0, F2 1 Ö

SD F4, 0 (R1) 1 Ö

LD F0, 0 (R1) 2 Ö Ö

MUL F4, F0, F2 2 Ö

SD F4, 0 (R1) 2 Ö



Dynamic scheduling: example 2
• After set up, there are two consecutive iterations of the loop in 

execution, a feature known as dynamic loop unrolling, with clear 
gains in execution speed.

• The critical point is the execution of LOAD and STORE from 
different iterations. They can be executed in any order, if they 
access different addresses, but if they use the same address, and 
hazards ensues as follows:

– WAR, if the LOAD precedes the STORE and they are executed 
out of order

– RAW, if the STORE precedes the  LOAD and they are executed 
out of order

– (n.b.: exchanges STOREs causes a WAW)
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Dynamic scheduling: example 2
• To establish if a LOAD can be executed, the CPU must 

check if any STORE not yet completed and preceding the 
LOAD uses the same memory location (RAW hazard)

• Similarly, a STORE must wait if other STORE or LOAD  
not yet completed and preceding the STORE use the same 
memory location (WAW and WAR hazard)

• To detect these hazards, the CPU must have computed and 
stored all RAM addresses associated to any operation 
involving a memory access preceding the one being 
scheduled.
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Dynamic scheduling: example 2

• A simple way to do so is to compute effective memory 
addresses (immediate + base register, in our ISA) 
according to the sequel of instructions in the program.

• Relative order must be preserved only for STORE vs 
other STOREs and LOADs, while LOADs can be 
interchanged freely among themselves (why ? ..)
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Dynamic scheduling: esempio 2

• LOAD: let us assume that effective addresses are computed in 
program order: when the computation for a given LOAD is 
completed, the CPU examines field A of all active STORE buffers, 
to detect address conflicts.

• If the LOAD address matches any active entry in a STORE buffer, 
the LOAD is not forwarded to the LOAD buffer until the the 
conflict is solved (that is, the relative STORE has completed).

• STORE: as with the LOAD, but the CPU controls both STORE and 
LOAD active buffers, because STOREs to a given address cannot 
be reorder with respect to LOADs from the same address.
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Dynamic scheduling: esempio 2
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Instruction Iteration Issue Execute Write Res.
LD F0, 0 (R1) 1 Ö Ö

MUL F4, F0, F2 1 Ö

SD F4, 0 (R1) 1 Ö

LD F0, 0 (R1) 2 Ö Ö

MUL F4, F0, F2 2 Ö

SD F4, 0 (R1) 2 Ö

Loop: LD F0, 0 (R1) (Hennessy-Patterson, Fig. 3.6)
MUL F4, F0, F2 // multiplies by a scalar in F2
SD F4, 0 (R1) // the elements of a vector
ADD R1, R1, -8
BNE R1, R2, Loop; //  branch if R1 <> R2



Hennessy-Patterson, Fig. 3.6:
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nome busy Op Vj Vk Qj Qk A

Load1 yes Load Regs[R1]

Load2 yes Load Regs[R1]-8

Add1 no

Add2 no

Add3 no

Mult1 yes MUL Regs[F2] Load1

Mult2 yes MUL Regs[F2] Load2

Store1 yes Store Regs[R1] Mult1

Store2 yes Store Regs[R1]-8 Mult2

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Load2 Mult2



Dynamic scheduling: example 2
– Try to describe the status of reservation stations and to 

analyse completion (the write phase) of loads and 
stores in the following situation:
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Instruction Iteration Issue Execute Write Res.
LD F0, 0 (R1) 1 Ö Ö Ö

MUL F4, F0, F2 1 Ö Ö

SD F4, 0 (R1) 1 Ö Ö

LD F0, 0 (R1) 2 Ö Ö Ö

MUL F4, F0, F2 2 Ö Ö

SD F4, 0 (R1) 2 Ö Ö



Dynamic scheduling: notes
• As already highlighted, all modern processors supporting dynamic 

scheduling use some variation of Tomasulo’s scheme.

• Dynamic ILP requires a complex and costly hardware (each 
reservation station must be realized as a high speed, associative 
buffer, to minimize delays) and a very sophisticated control logic.

• The CDB itself  requires a complex and high speed circuitry.

• A dynamically scheduled pipeline can have very good performances 
(close to one instruction completed per clock cycle – we do not 
consider so far multiple-issue architectures), provided branches 
are predicted in a most accurate manner.
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Branch Prediction (BP)
• We have already introduced the issues of control. Let us 

consider the instructions:

ADD R1, R4, R5
BNE R1, R2, branchtag;
SUB R5, R6, R7

branchtag: ADD R5, R6,R7

• In theory, until the outcome of the comparison between 
R1 and R2 is known, the CPU does not know which is the 
next instruction to fetch (SUB or ADD), and should stall 
the pipeline.
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Branch Prediction (BP)
• In RISC architecture, by analyzing the various types of 

programs, it turns out that there is a branch every 4-:-7 
instructions.

• In a 5-stage pipeline with “aggressive” branch execution 
in only 2 clock cycles, the pipeline must be stalled for 1 
clock cycle, waiting for the comparison outcome, thus 
roughly 1/5 of all clock cycles are wasted.

• In real architectures, pipelines are much deeper in stages, 
and since comparison result is known only after quite a 
number of clock cycles, the waste is much larger. 
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Branch Prediction (BP)
• A simple yet effective alternative consists of fetching 

anyway the instructions that “follow” the branch (SUB in 
the above example) and of starting their execution in the 
pipeline.

• It is a very simple form of static prediction: the branch is 
supposed not-taken.

• If the prediction is correct, no clock cycle is wasted

• Otherwise, the pipeline must be flushed, with proper 
control signals from the CU, by eliminating all 
instructions following the branch, that should not have 
been executed.
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Branch Prediction (BP)

• In a misprediction, the waste in clock cycles is the larger, 
the deeper the CPU, that is the more apart the stage in the 
pipeline that executes the comparison.

• Unfortunately, any static assumption on branch behaviour  
cannot guarantee a sufficiently low error rate

• All modern processors apply some form of dynamic 
branch prediction, with the outcome of the branch 
speculated on the basis of the “history” of that branch, 
namely previous executions of the same instruction.
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Branch Prediction (BP)
• Branch prediction (the dynamic version, from this point 

onward) is effective because many branch instructions in 
the programs are executed many times, and they tend to 
behave as in the preceding cases.

• The most obvious instance is a branch that controls a loop: 
if a program uses a loop, it is assumed that the instructions 
within the body of the loop are executed many times, and 
consequently the branch will have the same behaviour 
almost all of the times.

• No branch can be reliably predicted if it is executed only 
once …
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Branch-Prediction Buffer
• The most simple branch prediction technique is using a 

branch prediction buffer: an associative memory 
addressed with the n least significant bits of a branch 
instruction address.

• Every entry in the buffer contains two fields:
– the n least significant bits of the memory address where the 

branch instruction is located (it is the key into the associative 
memory)

– a prediction bit that stores the outcome of the last decision 
taken for that branch

Actually, the buffer is a cache for branch instructions. 
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Branch-Prediction Buffer
• At the first execution of the branch, the relevant 

information (address and prediction bit) are used to update 
the buffer.

• If the branch is executed again, and its prediction bit says 
that the branch must not be taken, the CPU continues to 
execute the instructions that follow the branch.

• Meanwhile, the branch instruction completes execution, 
and if the prediction is wrong (the branch must be taken), 
the pipeline is flushed and execution is restarted with the 
destination instruction. The prediction bit is 
complemented.
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Branch-Prediction Buffer
• Question (1): what happens if the prediction bit says that 

the branch must be taken ?

• Question (2): and what if this prediction is wrong ?

• Question (3): how can one know if the data in a specific 
entry are actually specific of the branch that is being 
executed ?
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Branch-Prediction Buffer
• Actually, this form of prediction can produce more errors 

than one can expect.

• Let us consider a loop executed 9 times, after which the 
loop exits, to re-enter in a later phase. What is the 
accuracy of the prediction?

• After 9 iterations, a prediction error cannot be avoided: 
the prediction error calls for another iteration, but the loop 
is finished. The bit is complemented.

• When the program re-enters the loop, the first prediction 
is wrong once again ...
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Branch-Prediction Buffer
• To prevent this problem, usually a new scheme is used, 

a (local) 2-bit predictor: a prediction must be wrong 
twice before it is changed

• The two bits are used as a counter:
– When a branch is taken, the counter is incremented by one (with 

a saturation to 11)

– When it is not taken, it is decremented (with saturation to 00) 

• If count = 11 or 10 à prediction taken

• If count = 00 or 01 à prediction not taken
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Branch-Prediction Buffer
• Actually, this is a 4-state automaton (Hennessy-Patterson, 

Fig. 3.7, Patterson-Hennessy fig. 6.39) :
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Branch-Prediction Buffer
• The two-bit scheme, though more complex, works well if, 

for each branch executed, the ratio between taken and not 
taken instances is really unbalanced.

• In this case, the 2-bit scheme is considerably more 
efficient than the 1-bit scheme. 

• Since 2 bits yield a better prediction than 1, it could be 
natural to further increase prediction accuracy by moving 
to a 3-bit scheme

• Oddily enough, prediction accuracy does not increase 
effectively using more than 2 bits.
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Branch-Prediction Buffer
• Moreover, the efficacy of the scheme depends also on the 

number of entries in the associative memory holding the 
prediction bits for branch instructions.

• Typically, these buffers are caches with 4096 entries, a 
number considered sufficient in most situations (though 
this does not guarantee that the bits of the correct branch 
are indeed used…).

• Simulations have shown that larger buffers do not offer 
effectively better preformances
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Branch-Prediction Buffer
• prediction accuracy for 2-bit, 4096-entry BPB (Hennessy-

Patterson, Fig. 3.8):
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Branch-Prediction Buffer

increase in accuracy with 
a 2-bit BPB and an 
infinite number of entries 
with respect to 4096 
entries: almost no 
difference !! (Hennessy-
Patterson, Fig. 3.9).
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Branch-Prediction Buffer
• With any prediction scheme, there are limits to the precision that 

can be reached (as an instance, the example just considered does not 
increase performance in consistent way by moving beyond 2 bits 
and 4096 entries). Furthermore, prediction capability varies on the 
basis of the actual application in execution.

• Modern processors use advanced variations on the BP techniques 
examined so far, that guarantee actual increments to precision 
accuracy. 

• Correlating predictors: the 2-bit predictors of two consecutive 
branches are correlated, thus combining the history of a branch with 
the behaviour of  another “nearby” branch. 

• Tournament predictors: each branch has two predictors, a 1-bit 
and a 2-bit one, and every time the prediction is based on the 
predictor that behaved best in the preceding case. 92



Branch-Prediction Buffer
Average mis-prediction rate in different benchmarks and in 3 different 
prediction techniques (Hennessy-Patterson, Fig. 3.18):

93



Branch Target  Buffer
• So far, an important feature of BP has been neglected: il the 

predictor votes for a taken branch, the CPU cannot start fetching the 
destination instruction until its address is known (PC + offset in the 
branch instruction).

• To overcome this problem , many CPUs use a branch target 
buffer, (also branch prediction cache), that, for each branch, 
stores the destination address to be used if the prediction is “taken”

• The value “PC + offset” is computed and stored in the BTB the first 
time the branch is executed.

• In subsequent executions, no computation is necessary: in case of 
“taken” prediction, the PC is loaded with the destination address 
stored in the buffer.
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Branch Target  Buffer
Each entry in the buffer stores a branch instruction from the 
program in execution (Hennessy-Patterson, Fig. 3.19):
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Hardware speculation

• In BP, the CPU starts executing instructions before 
knowing if they should actually be run. 

• If the prediction turns out to be wrong, instructions in 
pipeline in stages before that of the branch are nullified, 
and the correct instruction is stared.

• Let us consider the situation depicted in the next chart, 
where a true data dependence involving the branch can 
stall the CPU much longer than the time required to 
execute the branch.
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Hardware speculation
1. LD F4, 100(R4) // value not in cache…
2. BLE F4, #0.66666, jump // branch if less or equal
3. FADD F1, F1, #0.5 
4. DADD R1, R1, #2
5. jump: FADD F1, F1, #0.25
6. DADD R1, R1, #1

• If the data loaded from the LOAD is not in the cache, it might be 
necessary using tenths of clock cycles to fetch it from RAM.

• One can use BP on BLE, and start and complete the execution of 
the sums controlled by the branch, if this requires a number of clock 
cycles much shorter than that required to fetch the date for the BLE. 

• But what is the prediction is wrong?
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Hardware speculation
• Hardware speculation is the technique used in dynamic 

ILP to handle cases such as this.

• Branch controlled instructions are executed as if the 
prediction were correct (usually, one speaks of branch 
speculation, and of speculative instructions )

• However, it must be always possible to nullify speculative 
instructions, should the prediction be wrong.

• Question: in the example above, what about instructions 
that are not controlled by BLE (instructions 5 and 6)?
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Hardware speculation
• The problem is that instructions 3 and 4, controlled by the 

branch, pass results on to instructions 5 and 6, that should 
be executed anyway.

• If the LOAD takes a lot of time, the CPU can execute 
instructions 5 and 6 before knowing if it should eceuted 3 
and 4 also. 

• However, if 3 and 4 should not be executed, the values 
computed by 5 and 6 are wrong, and the two instructions 
must be executed again from scratch.

• This is to say that 5 and 6 also must be handled as 
speculative instructions, until the true output from BLE is 
known.. 99



Hardware speculation
• In Tomasulo’s scheme, hardware speculation requires a commit 

unit: a bank of internal registers known as Reorder Buffer (ROB) 
where instructions are parked, until is is known if they should 
actually have been executed (Patterson-Hennessy, fig. 6.49 
modified).
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Hardware speculation
• In the ROB executed instructions are stored along with the result 

they have computed, and enties in the ROB are a further support to 
register renaming.

• When the CPU “knows” (the “how” to be described shortly) that an 
instruction must effectively be executed, it performs the commit on 
it: it is cancelled from the ROB, and the destination register (or 
RAM memory in STORE instructions) is updated.

• If the CPU discovers that the instruction should not have been 
executed (or executed with other operands), it simply removes it 
from the ROB.
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Hardware speculation

• Even though instruction execution can be performed out-
of-order, commit must be carried out in-order, namely in 
the order in which the instructions have entered the CPU; 
this justifies the name ROB, that is actually managed as a 
circular queue.

• This constraint makes dependences control much simpler, 
and lessen the burden of handling exceptions, a very 
complex issue with speculation. 

• Indeed, what if a speculative instruction raises an 
exception, and then it turns out that it should not be 
executed altogether?
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Hardware speculation
• Each ROB entry has 4 fields:

1. instruction type: branch, that produces no result; store, 
that writes to RAM; ALU o load, that write to a register

2. destination: this is the register or memory address that 
will be modified by the instruction

3. value: this field stores the result of the instruction untill 
commit

4. ready: if set, it signals that the instruction has completed 
execution and that the output value is available.
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Hardware speculation
• In speculative execution, instructions go through four “macro-

phases”. The first three are equal to those in Tomasulo’s basic 
scheme

1. ISSUE: 
• an instruction if fetched from Instruction Memory (simplified 

assumption)
• it is forwarded to the EXECUTE phase if there are a reservation 

station and a ROB entry free. Instructions are inserted into the 
ROB in program order. Otherwise, stall.

• operands required by the instructions are forwarded to the RS if 
they are available in the registers or in the ROB (why can they 
be available in the ROB?)

• the ROB entry number that will receive the result is captured 
into the RS: it will be used to tag the result of the instruction, 
when it will be placed on the CDB. 104



Hardware speculation

2. EXECUTE: 
• If at least one of the operands is unavailable, the CDB is 

monitored to detect availability of the data

• when all opernads are available, the instruction is forwarded to 
the corresponding Functional Unit

3. WRITE RESULT:
• the result, once ready, is written on the CDB, and, through it, in 

the ROB and in any station waiting for it (note, not in the register 
file nor in RAM).
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Hardware speculation
4. COMMIT: (instructions commit is in-order, the ROB is managed 

as a circular queue, in which instructions are inserted in the same 
order of fetch from IM)

• when an instruction in Rob reaches the head of the queue 
(because other instructions have been inserted), commit can start

• If the instruction is NOT a branch, the content of the VALUE 
field is tranferred into the register or Ram location. The 
instruction is removed from the ROB

• if the instruction is a branch with a WRONG prediction (at 
this point, the execution of the branch has been completed, of 
course) the whole ROB is flushed and the computation restarts 
with the correct instruction.
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Hardware speculation

• If the branch was CORRECTLY predicted, nothing 
special happens: simply, the branch instruction is removed 
from the ROB and the head of the queue is updated to the 
next-in-line entry.

• In some architectures, as soon as the CPU detects that a 
branch prediction is wrong, the branch is immediately 
removed from the ROB together with all following 
instructions (that have been unduly executed), while the 
preceding ones are preserved.
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Hardware speculation
The basic structure for 
Tomasulo’s scheme with 
speculation. Note the 
ROB and the absence of 
store buffers. Let us still 
assume that the 
“instruction queue” is 
actually the Instruction 
Memory (Hennessy-
Patterson, Fig. 3.29):
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Hardware speculation: example
• Let us consider a CPU with FP functional units that execute an 

ADD in 2 cycles, a MUL in 10 cycles and a DIV in 40 cycles. The 
following code is executed:

LD F6, 34 (R2)
LD F2, 45  (R3)
MUL  F0, F2, F4
SUB F8, F6, F2
DIV F10, F0, F6
ADD F6, F8, F2

• Here follows the situation of the RS, RB, and FP registers when 
MUL is ready for commit (Hennessy-Patterson, Fig. 3.30):
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name busy Op Vj Vk Qj Dest A
Load1 no
Load2 no
Add1 no
Add2 no
Add3 no
Mult1 no MUL Mem[45+Regs[R3]] Regs[F4] #3
Mult2 yes DIV Mem[34+Regs[R2]] #3 #5

Field F0 F1 F2 ... F5 F6 F7 F8 F10
reorder # 3 ... 6 4 5
busy yes no no ... no yes ... yes yes

entry busy instruction state destination value
1 no LD     F6,34(R2) commit F6 Mem[34+Regs[R2]]
2 no LD     F2,45(R3) commit F2 Mem[45+Regs[R3]]
3 yes MUL  F0,F2,F4 write result F0 #2 x Regs[F4]
4 yes SUB   F8,F6,F2 write result F8 #1 - #2
5 yes DIV   F10,F0,F6 execute F10
6 yes ADD  F6,F8,F2 write result F6 #4 + #2



Hardware speculation - INTEL
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FU FU FU FU SA SD LA

L1 Dcache

(retirement)
register file

ROB
Reorder Buffer

MOB
Memory Reorder Buffer

Unified reservation stations

Decoded instruction
in program order
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Multiple Issue
• If dynamic ILP, considered so far, is augmented with 

multiple issue, namely the capability to start the 
execution of more instructions in parallel one comes 
close to a complete description of most modern processors.

• Multiple issue requires a “wider” datapath, to carry on 
from one pipeline stage to the following one all the 
informations associated to all instructions issued in 
parallel.

• But this costs little …. if one considers the actual usage of 
silicon die

112



Multiple Issue Drivers
• The die area is LARGELY devoted to caches, which 

implies that “CPUs” (aca pipeline stages) consume small 
areas.

• i7 die (2008), 263 mm² area, 731 millions transistors .113



Multiple Issue Drivers
• Bringing data & instructions from RAM into the die IS 

THE COST (in time). So, busses allow for wide data 
transfers since dies have large numbers of pads

• Cache lines (LLC that is L3) are usually 32B or even 
larger, thus each line possibly accommodates for many 
instructions.

• The true penalty has been paid (miss), the silicon for the 
CPU is much less demanding than for caches, so

• Multiple pipelines in each core
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Multiple Issue
a. There must be a sufficient number of functional units to execute in 

parallel multiple instructions. As an instance, at least a ALU, a 
multply unit for integers and fp, and so on (if these units are 
themselves pipelined, all the better !).

b. It must be possible to fetch multiple instructions from Instruction 
Memory, and multiple operands from Data Memory, within each 
clock cycle (cache memory for instructions and for data usually 
have enough “bandwidth” for this purpose)

c. The register file must be multi-ported both for addressing and for 
reading/writing registers, to support multiple read/write accesses 
within the same clock cycle
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Multiple Issue
• Any processor with these features is capable of issuing multiple 

instructions for execution in the same clock cycle, and it is therefore 
referred to as a superscalar architecture. (Hennessy-Patterson, 
Fig. A.29)

• A superscalar processor can be thought of as a set of pipelines 
working in parallel, each handling the execution of one instruction, 
as was the case with the first Pentium.
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• Strictly speaking, a superscalar 
architecture need not support neither 
dynamic scheduling nor speculation.



Multiple Issue

• Nethertheless, if no dynamic scheduling is available, the 
number of instructions that can be effectively executed in 
parallel is strongly reduced:

– an independent instruction C immediately following a couple of 
instructions A and B mutually dependent on one another is 
stopped any way, because of the stall caused by the couple A B.

• Therefore, it is really hopeless (at least inefficient) trying 
to issue multiple instructions in a statically scheduled 
pipeline. 
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Multiple Issue
• This is why processors with a statically scheduled pipeline 

issue at most two instructions per clock cycle, since 
otherwise they could not sustain a higher degree of issue.

• Even so, they must resort to specific techniques for static 
ILP, most notably to a strong support from the compiler, 
to raise at the most CPI.

• A larger issue parallelism (4 or 5 instructions per clock 
cycle) requires either a dynamically scheduled pipeline, or 
a VLIW processor (next chapter) 
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Multiple Issue

• Let us examine the basic operation of a superscalar processor.

• It fetches from IM (that is, from first level instruction cache)
from 0 to N instructions each cock cycle (bundle), being N the 
largest number of instructions that IM can provide in parallel.

• Instructions are forwarded (in bundles) to an Instruction Queue (IQ) 
so that the CU (“dispatch Control Unit”) can analyze them and 
check for possible hazards and dependencies.

• This Instruction Queue is depicted in figures Henessy-Patterson 3.2 
and 3.29. According to the type of processor, the IQ has a capacity 
of some tenths of entries (the actual value depends on processor 
model, with newer processor having larger and larger queues)
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Multiple Issue
• The CU control logic checks for potential structural and data 

hazards among the instructions in a bundle and issues (that is, 
forwards to the reservation stations) some instructions, making 
room for more instruction in the queue.

• At the next clock cycle, another group (possibly the largest) of 
instructions is fetched from IM, and one more bundle is assembled.

• The number of instructions that the CPU can actually issue for 
execution is likely smaller to the number that can be fetched from 
IM.

• In the long run, the IQ gets filled up; if in a given clock cycle M 
instructions are issued for execution, a maximum of M ≤ N can be 
fetched from a bundle at the next clock cycle.

120



Multiple Issue
• In the worst case, if IQ is filled up, and in the preceding clock cycle 

no instruction has been sent to the EXECUTE phase because of 
hazards, no further instruction can be fetched from IM.

• Should this happen even if there is room in IQ, since the processor 
might fetch a number of instructions smaller to the free entries in 
IQ?

• Also keep in mind that, in the long run, the CPU must check for 
dependences and hazards among some tenths of instructions, which 
requires thousands of cross checks (in one or two clock cycles!) 

• If the processor supports speculation (the most common case 
indeed), the CPU must also be able to carry out the commit of 
multiple instructions in the same clock cycle, otherwise the ROB 
quickly becomes the system bottleneck.
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Multiple Issue
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Multiple Issue: example
Loop: LD F0, 0 (R1)

FADD F4, F0, F2
SD F4, 0 (R1)
ADD R1, R1, -8
BNE R1, R2, Loop; //branches if R1 <> R2

• Let us use Tomasulo’s scheme in a dynamically schedule 
superscalar version of MIPS featuring one ALU and one F.P. unit, 
capable of issuing two instructions per clock cycle, with
no speculation. Let us assume that the BNE branch is correctly
predicted thanks to a branch target buffer.

• In the following chart is depicted the situation of the first three
iterations, scheduled dynamically. ( I = Issue, X = Execute, 
M=Memory access, W=Write results to CDB) 123



Multiple Issue: example
• Further assumptions:

• Phase X (execute) in FADD requires 3 clock cycles.

• Optimal branch prediction, but instructions after the branch 
cannot proceed to X until the branch condition is evaluated 
(there is no speculation).

• The computed value is written onto the CDB at the end of the 
clock cycle in which it is produced, and thus it is available to 
the various reservation stations waiting for it only at the end 
of the subsequent clock cycle

• The ALU is used both for integer operations and for load and 
store address computation.
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Multiple Issue: example
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clck LD FADD ST ADD BNE LD FADD ST ADD BNE LD FADD ST ADD BNE

1 I I

2 X I I

3 M X I

4 W X I I

5 X W I I

6 X X I

7 X X I I

8 W M X I I

9 M W X I

10 X W

11 X X

12 X X

13 W M X

14 M W X

15 X W

16 X X

17 X

18 W

19 M



Multiple Issue: example
• 15 instructions (three iterations) are carried out in 19 clock cycles, 

with a CPI of 19/15 = 1,27

• Can this performance be improved?

• Note that the ALU, used both for integer operations and for 
addresses computation, becomes a bottleneck. 

– With two separate ALUS, the instructions would complete in 12 clock cycles, 
instead of 19.

• Furthermore, the FP unit is under-used (a single FP operation per 
clock cycle), and 2 of the 5 instructions are only for loop 
management and are repeated in each iteration (ADD and BNE)

– It is possible to apply static loop unrolling, to increase the number of FP 
operations and to decrease loop management overhead (a feature to be 
discussed in the next chapter)
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Why is dynamic ILP so good ?
• Processors with dynamic ILP try to minimize structural, data and 

control hazards at run time, and must carry out a very complex set 
of actions in a few clock cycles

• What about moving all work required to exploit parallelism 
embedded in instructions over to the compiler, that has much more 
time to analyze and solve (when possible) the various hazards in a 
program?

• The main reasons are three

1. Cache miss cannot be foreseen statically, and dynamic ILP can 
partially hide them by executing other instructions, while the 
instruction that caused the miss is waiting for the missing data to be 
fetched from RAM into the cache.
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Why is dynamic ILP so good?
2. Branches cannot be statically predicted with proper accuracy

and dynamic BP and speculation increase the probability to carry 
out useful work well in advance with respect to the moment when 
the outcome of the branch instruction is known.

3. Static ILP works well only on a specific architecture, as will be 
discussed in detail in the next chapter. With dynamic ILP programs 
can be distributed and get executed on different architectures 
(provided they support the ISA) having a different number of F.U., 
registers for renaming, pipeline stages, type of branch prediction (as 
an instance, many Pentium, Core duo, AMD and the like)

• Dynamic ILP works, but is it really good? 
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Theoretical limits of dynamic ILP

• We have discussed many complex techniques to exploit at run-time 
the parallelism embedded in a program instructions.

• But, set aside the practical limitations (due to effective availability 
of hardware resources), how much room is there for parallelism?

• The only limitations than cannot be overcome are those due to real 
data dependences: 

LD F0, 0 (R1)

ADD F4, F0, F2

• all other limitations can be overcome with enough hardware and 
enough info about them
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Theoretical limits of dynamic ILP

• Let us do the following assumption on a theoretical CPU:
– register renaming: the CPU has an infinite number of registers 

for renaming. So all WAW and WAR are eliminated and an 
arbitrary number of instructions can be executed concurrently

– Branch prediction: optimal

– Memory-address alias analysis: all RAM addresses are known, 
so that RAM based name dependences can always be avoided. 
For example, it is known if #57 (R5) = #10 (R1)

– Multiple issue: unlimited

– Cache memory: no miss
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Theoretical limits of dynamic ILP

• note that FP programs usually have more parallelism to be 
exploited at the loop level 131

• Here are the results for a few benchmarks. (Hennessy-
Patterson, Fig. 3.35)



Theoretical limits of dynamic ILP
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• So, what if one limits the number of consecutive 
instructions that can be examined for dependences 
analysis? (still maintaining optimal branch prediction)

• The amount of work to be done (quickly ! in one or two 
clock cycles) can be enormous. Some estimations:

• 2000 instructions: 4 millions of comparisons

• 50 instructions: 2500 comparisons

• The last figure is the average number of comparisons 
affordable in a modern CPU (in one or two clock cycles!)



Theoretical limits of dynamic ILP
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Here is the decrease in 
ILP actually available
(Hennessy -Patterson, 
Fig 3.37):



Theoretical limits of dynamic ILP
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Let us now add a 
limitation on branch 
prediction, by using 
different actual 
modes (Hennessy-
Patterson, Fig. 3.39)



Theoretical limits of dynamic ILP
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• Clearly, by introducing just a few real limitations, actually 
available ILP diminishes quickly.

• If one takes into account other factors, such as a limited 
number of registers for renaming, non-perfect RAM 
references analysis, cache miss, and so on, true ILP is 
further limited.



Some science(fiction)
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• Clearly, it is possible to extract more and more ILP by 
increasing the number of avalialble resources (cache, 
registers, circuitry for dependencs analysis). Is there 
anything else?

• Some research issue hint to some form of value 
prediction (VP).

• VP consists of trying to predict vales produced by 
instructions, and effective addresses used in LOAD and 
STORE



Some science(fiction)
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• If the result of one operation can be predicted, it can also 
be forwarded to dependent instructions that wait for it as 
their operand.

• This is a form of instruction speculation, not branch 
speculation, and it would allow for the concurrent 
execution of mutually dependent instructions.

• Thus is useful only if the prediction has good chances of 
being correct, which can indeed happen in some 
situations.

• What would be the benefit of a perfect prediction 
capability?



Some science(fiction)
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• Another form of prediction can be tried on LOAD and 
STORE addresses, allowing to re-order such memory 
operations without incurring in WAW or WAR hazards.

• Finally, some studies hint to a possible branch speculation 
involving multiple branches, possibly nested, up to a 
number of 8 consecutive branches...


